Supporting Inforamtion

Identification of Geometrical Isomers Using Vibrational Circular Dichroism Spectroscopy: A Series of Mixed-Ligand Complexes of Diamagnetic Co(III) Ions

Hisako Sato, Hidemitsu Uno and Haruyuki Nakano

Chromatographic separation of the bis(tfac) complexes of [Co(tfac)₂(acac))]

$^{1}HNMR$

The ¹H NMR spectra (JNM-AL400, JEOL, Japan) were measured on the CDCl₃ solutions of metal complexes. The chemical shift values (δ) and peak areas are given below.

Figure S2. The ¹H NMR spectra were measured on the CDCl₃ solutions of metal complexes:

 $[Co(tfac)_n(acac)_{3-n})]$ (n = 0 ~ 3): (a) mono(tfac) complexes (n = 1); (b) bis(tfac) complexes (n = 2);(trans-cis, cis-trans and cis-cis) (c) tris(tfac) complexes (n = 3) (mer and fac).

Co(tfac)(acac)₂: (400 MHz,CDCl₃) δ(ppm) 5.85 (s,1H), 5.52 (s,1H), 5.48 (s,1H), 2.26 (s,3H), 2.20 (s,3H), 2.16 (s,3H), 2.13 (s,3H) ,2.12 (s,3H)

trans-cis –[Co(tfac)₂(acac)]: (400 MHz,CDCl₃) δ (ppm) 5.93 (s,2H), 5.50 (s,1H), 2.35 (s,6H), 2.16 (s,6H)

cis-trans –[Co(tfac)₂(acac)]: (400 MHz,CDCl₃) δ (ppm) 5.90 (s,2H), 5.58 (s,1H), 2.27 (s,6H), 2.22 (s,6H)

cis-cis –[Co(tfac)₂(acac)]: (400 MHz,CDCl₃) δ (ppm) 5.92 (s,1H), 5.90 (s,1H), 5.54 (s,1H), 2.31 (s,3H), 2.27 (s,3H), 2.21 (s,3H), 2.17 (s,3H)

fac – [Co(tfac)₃]: (400 MHz,CDCl₃) δ (ppm) 5.96 (s,3H), 2.33 (s,3H)

mer – [Co(tfac)₃]:(400 MHz,CDCl₃) δ (ppm) 5.99 (s,1H), 5.97 (s,1H), 5.94 (s,1H), 2.37 (s,3H), 2.36 (s,3H), 2.33 (s,3H)

Figure S3. Chromatograms for the separation of the eantiomer pairs of $[Co(tfac)_n(acac)_{3-n})]$ (n = 0 ~ 3): (a) mono(tfac) complex (n = 1); (b) bis(tfac) complexes (n = 2); (c) tris(tfac) complexes (n = 3). The complexes were eluted with methanol at a flow rate of 1 mLmin⁻¹ and 40°C. The column was packed with an ion-exchange adduct of Δ -[Ru(phen)₃]²⁺/synthetic hectorite.

Two peaks (denoted by $1P_1$ and $1P_2$, respectively) were obtained in $[Co(tfac)(acac)_2)]$.

A racemic mixture of bis(tfac) complexes trans-cis, cis-trans and cis-cis-($[Co(tfac)_2(acac)]$) was eluted with method on the same column after silica gle colum of HPLC. These peaks (denoted by trans-cis $(2P_1, 2P_2)$, cis-trans $(2P_3, 2P_4)$ and cis-cis $(2P_5, 2P_6)$, respectively) were obtained.

The fac-[Co(tfac)₃]) was eluted with methanol on the same column. The peaks (denoted by $3P_1$, $3P_2$, respectively) were obtained on separation. The mer-[Co(tfac)₃]) is not separted by two parts. We have two sections of collected and named as $3P_3$ and $3P_4$.

Circular dichorims spectra

Figure S4. Circular dichroism spectra of $[Co(tfac)_n(acac)_{3-n})]$ (n = 0 – 3)

Black and pink curves are for Λ and Δ - isomer, respectively. From the CD spectra of these fractions, $\mathbf{3P_1}$ and $\mathbf{3P_2}$ of HPLC (Figure S3) were concluded to contain Δ -isomer and Λ -isomers, respectively. In other isomers, peak 1 and peak 2 were concluded to contain Λ -and Δ - isomer, respectively.

The molar extinction coefficient (ϵ) and $\Delta \epsilon$ were determined from the methanol solution of each isomer as given below.

[Co(tfac)(acac)₂]: ε (112.8 at 594 nm), ε (7115 at 325 nm) :(Λ-isomer):Δε (-2.34 at 652 nm). Δε (7.09 at 576 nm) (Δ-isomer): Δε (+2.41 at 650 nm). Δε (-4.93 at 571 nm), IR; ε 1852 (1521 cm⁻¹)

[Co(tfac)₂(acac)]: trans-cis: ε (115.4 at 594 nm) , ε (6154 at 325 nm): Λ -isomer $\Delta\varepsilon$ (-3.27 at 659 nm); $\Delta\varepsilon$ (7.48 at 575 nm) Δ -isomer $\Delta\varepsilon$ (+ 3.56 at 661 nm) $\Delta\varepsilon$ (-6.43 at 572 nm) IR; ε 1015(1522 cm⁻¹)

cis-trans: ε (126 at 598 nm), ε (6194 at 325 nm) : (Λ -isomer): $\Delta\varepsilon$ (-2.66 at 646nm); $\Delta\varepsilon$ (6.72 at 574 nm) (Δ -isomer): $\Delta\varepsilon$ (+3.16, 642nm); $\Delta\varepsilon$ (-6.47 at 575 nm), IR IR; ε 902(1522 cm⁻¹)

cis-cis: ϵ (112 at 593 nm), ϵ (5872 at 325nm): (A-isomer): $\Delta\epsilon$ (-1.53at 647nm); $\Delta\epsilon$ (4.53 at 573 nm) (Δ -isomer): $\Delta\epsilon$ (+2.52, 651 nm); $\Delta\epsilon$ (-4.63at 576 nm), IR; ϵ 1090(1521cm⁻¹)

[Co(tfac)₃]: fac: ε (112.at 596 nm), ε (6194 at 325nm):(Λ-isomer): Δε (-2.07at 653 nm); Δε (7.21 at 577 nm) (Δ-isomer): Δε (3.24 at 656 nm); Δε (-6.86 at 578 nm), IR; ε 673(1527 cm⁻¹)

mer: ε (137 at 598 nm), ε (6487 at 325nm): (Λ-isomer): Δε (-2.95 at 657 nm); Δε (6.52 at 578 nm) (Δ-isomer):Δε (3.57at 656 nm); Δε (-4.54 at 577 nm), IR; ε 619(1527 cm⁻¹)

Figure S5. Vibrational circular dichroism spectra of Δ -Co(acac)₃: calculation (upper) and observation (lower) (solvent: CDCl₃).