Supporting Information for

Theoretical characterization of a Ru N-Heterocyclic Carbene derivative of a polyoxometalate. Enhanced π -interaction in oxide supported TM-organic linkages.

Nadya S. Antonova, Jorge J. Carbó^{*} and Josep M. Poblet^{*}

Departament de Química Física i Inorgànica. Universitat Rovira i Virgili, 43007 Tarragona, Spain.

Table S1. Selected topological parameters of the analysis of the electron density distribution for the all studied carbene complexes. Values in a.u.^a

	Fisher]	Ru-NHC				Schrock
	4	2 _C	2 _P	2 _{Cl}	2 ₀	$2_{\rm N}$	3	1	5
M-C									
d (Å)	2.057	2.141	2.132	2.115	2.094	2.072	2.070	2.011	1.899
$\rho(r)$.089	.096	.097	.106	.112	.114	.111	.128	.193
$\nabla^2 \rho(r)$.315	.254	.275	.226	.206	.269	.256	.310	.341
C _{carb} -N									
$\rho(r)$	-	.310	.310	.314	.320	.310	.320	.306	-
$\nabla^2 \rho(r)$	-	820	820	822	851	810	861	788	-
^a For 2 _C , 2 _P ,	and 2 _N , we	e report aver	age values.						

Table S2. Energy Decomposition Analysis of Ru-NHC, Fischer- (4), and Schrock- type (5) carbene complexes at BP86/TZP level. Energies in kcal.mol⁻¹ and TM-C_{carbene} distances in Å.^a

	Fisher			Ru-NHO	2				Schrock
	4	2 _C	2 _P	2 _{Cl}	2 ₀	$2_{\rm N}$	3	1	5
d (Å)	2.057	2.141	2.132	2.115	2.094	2.072	2.070	2.011	1.899
ΔE_{int}	-48.1	-52.2	-53.4	-56.6	-114.7	-58.5	-58.1	-60.8	-129.5
ΔE_{steric}	+7.9	+8.5	+10.4	+23.2	-14.9	+16.5	+16.4	+61.0	+66.1
ΔE_{pauli}	109.6	144.6	155.8	182.1	152.8	174.6	176.6	268.8	248.4
ΔE_{elstat}	-101.7	-136.1	-145.4	-158.9	-167.7	-158.1	-160.2	-207.8	-182.3
	(65%)	(69%)	(69%)	(67%)	(63%)	(67%)	(68%)	(63%)	(48%)
ΔE_{orb}	-56	-60.6	-63.8	-79.7	-99.8	-76.5	-74.5	-121.8	-195.7
	(35%)	(31%)	(31%)	(33%)	(37%)	(33%)	(32%)	(37%)	(52%)

^a For 2_{C} , 2_{P} , and 2_{N} , we report average values. The values in parentheses give the percentage contribution to the total attractive energy

Table S3 Decomposition of ΔE_{qrb} in terms of donation, back-donation and polarization for all studied carbenes.^a Energies in kcal.mol^{-1,a}

	Fisher			Ru-NHC	2			
	4	2 _C	2 _P	2 _{Cl}	2 ₀	2 _N	3	1
$\Delta E_{orb.}$	-56.0	-60.6	-63.8	-79.8	-99.8	-76.5	-74.5	-121.8
$\Delta E_{\sigma}(L \rightarrow TM)$	-18.3	-24.3	-23.9	-33.3	-47.3	-31.6	-31.6	-32.8
	(69%)	(84%)	(78%)	(87%)	(90%)	(83%)	(85%)	(77%)
$\Delta E_{\pi}(TM \rightarrow L)$	-8.3 (31%)	-4.5	-6.8	-4.8	-5.4 (10%)	-6.6	-5.4 (15%)	-9.9
		(16%)	(22%)	(13%)		(17%)		(23%)
ΔE_{syn}	-6.9	-4.0	-4.7	-5.5	-8.0	-6.8	-6.8	-8.3
$\Delta E_{pol.}$	-27.1	-32.4	-32.3	-41.5	-41.3	-37.1	-37.0	-82.3
$\Delta q_{\sigma}(L \rightarrow TM)$	0.25	0.38	0.30	0.33	1.61	0.32	0.31	0.25
$\Delta q_{\pi}(TM \rightarrow L)$	0.11	0.06	0.12	0.06	0.03	0.09	0.06	0.12

^a For 2_{C} , 2_{P} , and 2_{N} , we report average values. The values in parentheses give the percentage contribution to the sum of σ -donation and π -backdonation terms.

Cartesian coordinates in Å:

(²1) [K(PW₉O₃₄)2(cis-WO₂)(cis-RuLMe₂)]¹²⁻

W	1.362462	-3.659441	-0.241467
W	-1.544611	-2.944058	-1.952882
W	-1.466020	-2.900208	-5.762918
W	1.507169	-3.499620	-7.373733
W	4.771677	-4.266725	-5.488630
W	4.715935	-4.334955	-1.980272
W	1.793589	-6.951214	-2.087563
W	-1.174627	-6.234342	-3.875210
W	1.854265	-6.865498	-5.605337
W	0.000000	0.000000	-7.777383
Ru	0.000000	0.000000	-0.070080
Р	1.567522	-3.780005	-3.796571
Ν	-2.592332	-0.746381	1.291277
Ν	-0.883807	-1.639524	2.369934
0	1.553972	-4.110649	1.491926
0	1.201615	-1.723703	-0.029227
0	-3.231850	-2.989445	-1.370088
0	-1.073094	-1.163670	-1.558328
0	-3.124113	-2.940014	-6.378028
0	1.781112	-3.856619	-9.097857
0	5.562365	-2.671162	-5.435647
0	5.913952	-5.138384	-6.578717
0	5.816177	-5.232917	-0.866972
0	5.478239	-2.722205	-1.923560
0	2.070863	-8.361073	-0.994631
0	-2.683350	-7.213897	-3.908171
0	2.180126	-8.258725	-6.706753
0	-1.115858	-0.779959	-8.918934
0	-0.618809	-3.595282	-0.365625
0	3.193748	-3.706645	-0.816723
0	1.200011	-5.540074	-0.863500
0	-1.676379	-2.519417	-3.844767
0	-1.529976	-4.888427	-2.553192
0	-0.465841	-3.551864	-7.283452
0	-1.477511	-4.859358	-5.160183
0	-0.950979	-1.126418	-6.083661
0	3.313057	-3.610/36	-6.688103
0	1.344846	-5.452726	-6.80/03/
0	1.299311	-1.596858	-7.498531
0	5.433464	-4.8/33/1	-3./216/1
0	3.510530	-6.035101	-5.423959
0	3.442146	-6.080810	-2.12/242
0	-0.141040	-7.231091	-2.519008
0	2.143287	7 104600	-5.055520
0	-0.095509	-7.194099	-3.210313
0	0.904454	-5.155980	-2.312802
0	1 160995	5 220612	2 929150
0	1.109883	-3.329012	-5.050150
C	0.964262	-3.077404	1 206279
C	-1.218043	-0.830983	2 1/35/6
C	-3.179187	2 101035	2.143340
C	-2.033373	1 815216	2 02/201
C	-3 420680	-0.243926	0.180058
v v	-3.420080	-0.243920	3 850342
H	-3 447616	-2 656258	1 520342
н	-2.777/010	-2.050258	2 650/21
Н	-2 142518	-1 550748	4 098370
н	-1 953683	-3 181858	3 338066
Н	0 644701	-2.888173	3 080854
H	0.540221	-1.236379	3.883679
Н	1.164486	-1.475349	2.176951

Electronic Supplementary Information for Dalton Transactions This journal is © The Royal Society of Chemistry 2011

н	-1 3581/15	0 1530/1	0.621161
11	-4.556145	0.155941	0.021101
Н	-3.632634	-1.05//0/	-0.528324
Н	-2.890770	0.583187	-0.300344
W	-1.362462	3.659441	-0.241467
W	1.544611	2.944058	-1.952882
W	1 466020	2 900208	-5 762918
w	-1 507169	3 /006200	_7 373733
vv 117	-1.30/109	3.499020	-7.373733
vv	-4.//10//	4.200/25	-5.488030
W	-4.715935	4.334955	-1.980272
W	-1.793589	6.951214	-2.087563
W	1.174627	6.234342	-3.875210
W	-1.854265	6.865498	-5.605337
P	-1 567522	3 780005	-3 796571
I NT	-1.507522	0.74(201	1 201277
IN N	2.592552	0./40381	1.2912//
N	0.883807	1.639524	2.369934
0	-1.553972	4.110649	1.491926
0	-1.201615	1.723703	-0.029227
0	3.231850	2.989445	-1.370088
Õ	1 073094	1 163670	-1 558328
0	2 12/112	2 040014	6 279029
0	5.124115	2.940014	-0.5/8028
0	-1./81112	3.856619	-9.09/85/
0	-5.562365	2.671162	-5.435647
0	-5.913952	5.138384	-6.578717
0	-5.816177	5.232917	-0.866972
õ	-5 478239	2 722205	-1 923560
0	2 070863	2.722203 8.361073	0.004621
0	-2.070803	8.301073	-0.994031
0	2.683350	/.21389/	-3.9081/1
0	-2.180126	8.258725	-6.706753
0	1.115858	0.779959	-8.918934
0	0.618809	3.595282	-0.365625
0	-3.193748	3.706645	-0.816723
Õ	-1 200011	5 540074	-0.863500
0	1 676270	2 5 1 0 4 1 7	2 844767
0	1.070379	2.319417	-3.644707
0	1.529976	4.888427	-2.553192
0	0.465841	3.551864	-7.283452
0	1.477511	4.859358	-5.160183
0	0.950979	1.126418	-6.083661
0	-3 313057	3 610736	-6 688103
õ	-1 3/18/16	5 452726	-6 807037
0	1 200211	1 506959	7 409521
0	-1.299511	1.390838	-7.498331
0	-5.433464	4.8/33/1	-3./216/1
0	-3.510530	6.035101	-5.423959
0	-3.442146	6.080810	-2.127242
0	0.141646	7.231091	-2.519008
0	-2.143287	7.787634	-3.833526
Õ	0.093509	7 194699	-5 216313
0	0.0004434	2 155096	2 512862
0	-0.904434	2 (5115)	-2.312602
0	-3.130944	3.031130	-3./44398
0	-1.169885	5.329612	-3.838150
0	-0.984282	3.077404	-5.063042
С	1.218643	0.830983	1.296378
С	3.179187	1.778415	2.143546
Ċ	2 035373	2 101035	3 109486
C	0.422769	1 915216	2 02/201
C	-0.432708	1.813210	2.924291
C	3.420680	0.243926	0.189058
Н	3.44/616	2.656258	1.520398
Н	4.091065	1.403457	2.659431
Н	2.142518	1.550748	4.098370
Н	1.953683	3.181858	3.338066
н	-0 644701	2 888173	3 080854
н	_0 540221	1 226270	3 882670
п	-0.340221	1.2303/9	3.0030/9
Н	-1.164486	1.4/5349	2.1/6951
Н	4.358145	-0.153941	0.621161
Н	3.632634	1.057707	-0.528324
Н	2.890770	-0.583187	-0.300344

$(\mathbf{3}) \left[Cl_2 Ru(LMe)(PH_3)(C(H)Ph) \right]$

Ru	19.768779	9.598368	16.969741
Cl	19.384166	10.122015	14.569199
Cl	19.780791	8.465248	19.120454
Р	17.541958	10.405792	17.347551
С	21.430097	8.474951	16.437425
Ν	22.743723	8.667169	16.683587
С	23.589729	7.613948	16.092980
Н	24.258589	7.186653	16.853317
Н	24.207876	8.031215	15.282716
С	22.559928	6.597956	15.574980
Н	22.709380	6.354175	14.513871
Н	22.569651	5.660110	16.152812
Ν	21.286211	7.308491	15.773724
С	20.496013	11.108163	17.803579
Н	20.687491	10.962325	18.887005
С	20.840143	12.445207	17.342339
С	20.662612	12.902862	16.013767
Н	20.232400	12.217317	15.280580
С	21.043513	14.192644	15.657064
Н	20.901159	14.531302	14.629424
С	21.613794	15.054250	16.604246
Н	21.918268	16.061078	16.313578
С	21.793559	14.621847	17.923516
Н	22.233843	15.290137	18.664273
С	21.406719	13.335365	18.288757
Н	21.539769	12.992906	19.317068
Н	17.237062	11.792603	17.236342
Н	16.516316	9.936276	16.478003
Н	16.886475	10.150170	18.591805
С	20.007613	6.701769	15.414066
Н	19.336760	6.673730	16.286786
Н	19.528045	7.258386	14.597036
Н	20.188028	5.669180	15.092180
С	23.351186	9.805716	17.357073
Н	23.220254	10.735353	16.785872
Н	22.923538	9.932494	18.359736
Н	24.424985	9.608538	17.459534

(4) [Cr(CO)₅(C(OH)₂)]

Cr	0.000000	0.000000 0.940148
С	0.000000	0.000000 2.856749
С	-1.369999	-1.344530 0.939495
С	1.369999	-1.344530 0.939495
С	1.369999	1.344530 0.939495
С	-1.369999	1.344530 0.939495
0	-2.199419	-2.155167 0.945878
0	2.199419	-2.155167 0.945878
0	2.199419	2.155167 0.945878
0	0.000000	0.000000 4.015617
0	-2.199419	2.155167 0.945878
С	0.000000	0.000000 -1.119634
0	0.000000	-1.063072 -1.925882
0	0.000000	1.063072 -1.925882
Н	0.000000	-1.853113 -1.350361
Н	0.000000	1.853113 -1.350361

(5) [F₄W(C(CH₃)₂)]

С	-0.416860	1.066061	0.000087
F	2.499223	1.092955	-0.421101
F	0.241233	-1.773182 0.4	20742
W	1.075413	-0.107686 0.0	00259

Electronic Supplementary Information for Dalton Transactions This journal is © The Royal Society of Chemistry 2011

F	1.072994	-0.767416 -1.785120
F	1.717025	0.050144 1.784983
С	-0.324459	2.413392 0.690447
Н	0.167723	3.146722 0.030971
Н	-1.335634	2.781569 0.919925
Н	0.251322	2.371628 1.624896
С	-1.703857	0.659739 -0.692801
Н	-2.280429	-0.030453 -0.056000
Н	-2.321041	1.551147 -0.880349
Н	-1.524920	0.152127 -1.650384