Electronic Supplementary Information

Complexes of copper(II) with 3-(*ortho*-substituted phenylhydrazo)pentane-2,4-diones: syntheses, properties and catalytic activity for cyclohexane oxidation

Maximilian N. Kopylovich,^{*a*} Andreia C. C. Nunes,^{*a*} Kamran T. Mahmudov,^{*a*} Matti Haukka,^{*b*} Tatiana C. O. Mac Leod,^{*a*} Luísa M. D. R. S. Martins,^{*a,c*} Maxim L. Kuznetsov,^{*a*} Armando J. L. Pombeiro*^{*a*}

^{*a*} Centro de Química Estrutural, Complexo I, Instituto Superior Técnico, TU Lisbon, Av. Rovisco Pais, 1049–001 Lisbon, Portugal

^b University of Joensuu, Department of Chemistry, P.O. Box 111, FIN-80101, Joensuu, Finland, ^c Departamento de Engenharia Química, ISEL, R. Conselheiro Emídio Navarro, 1959-007 Lisboa, Portugal

*Corresponding author.

E-mail addresses: pombeiro@ist.utl.pt (Armando J. L. Pombeiro).

Substituent constants

Substitutents	$\sigma_{\! m p}{}^{ m a}$	$\sigma_{\! m o}{}^{ m b}$	σ_{I}^{a}
-OH	-0.37	-0.24	0.25
-AsO ₃ H ₂	-0.02	-0.01	
-Cl	0.23	0.15	0.47
-SO ₃ H	0.35	0.23	—
-COOCH ₃	0.45	0.29	0.30
-СООН	0.45	0.29	0.30
-NO ₂	0.78	0.51	0.63
-H	0	0	0

 Table S1 Substituent constants

^a C. Hansch, A. Leo, W. R. Taft, *Chem. Rev.* 1991, **91**, 165; C. Laurence, B. Wojtkowiak, *Ann. Chim.* 1970, **5**, 163; B. P. Mcdaniel, H. C. Brown, *J. Am. Chem. Soc.* 1958, **23**, 420; V. A. Pal'm, *Rus. Chem. Rev.* 1961, **30**, 471;

^b Values were calculated by equation $\sigma_0 = 0.65 \cdot \sigma_p$. (A. Beteringhe, *Central Eur. J. Chem.* 2005, **3**, 585).

Computational details

	E_g	Es	H_g	H _s	\mathbf{S}_{g}	$\mathbf{S}_{\mathbf{s}}$	G_{g}	Gs
H ₂ O	-76.422572	-76.434146	-76.397694	-76.409268	46.50	25.37	-76.419789	-76.421322
<i>trans</i> - Cu(H ₂ O) ₂ (OH) ₂	-501.889708	-501.913699	-501.802952	-501.826943	94.01	51.02	-501.847621	-501.851184
cis-Cu(H ₂ O) ₂ (OH) ₂	-501.885273	-501.912323	-501.798819	-501.825869	95.83	52.01	-501.844350	-501.850581
L_1	-761.571563	-761.588873	-761.336899	-761.354209	125.99	68.29	-761.396760	-761.386656
L_2	-3146.434639		-3146.177179		150.57		-3146.248719	
L ₃	-1145.943481		-1145.722540		128.38		-1145.783535	
L_4	-1310.147887	-1310.161000	-1309.899940	-1309.913053	143.68	77.85	-1309.968207	-1309.950042
L_5	-914.235881		-913.958974		144.46		-914.027612	
L ₆	-874.930175		-874.683164		136.81		-874.748167	
L_7	-890.854244		-890.620086		136.99		-890.685174	
L_8	-686.351342	-686.361137	-686.121915	-686.131710	121.11	65.66	-686.179456	-686.162907
[Cu(OH)(L ₈) (H ₂ O)](H ₂ O)	-1111.835151	-1111.852626	-1111.544688	-1111.562163	166.92	90.39	-1111.623995	-1111.605110
$[Cu(L_1)(H_2O)_2]$ (H ₂ O)	-1187.091071	-1187.108453	-1186.795078	-1186.812460	164.32	88.99	-1186.873153	-1186.854742
$[Cu(L_4)(H_2O)_2]$ (H ₂ O)	-1735.678476	-1735.703365	-1735.368377	-1735.393266	180.58	97.77	-1735.454178	-1735.439720

Table S2 Total energies, enthalpies, Gibbs free energies (in Hartree) and entropies (in cal·mol⁻¹K⁻¹) of the calculated structures for gas-phase and water solution

Thermal behaviours of 1-8 and some of their copper(II) complexes

The thermal properties of the ADB and their copper(II) complexes were investigated by thermogravimetric analysis (TG), derivative thermogravimetry (DTG) and differential thermal analysis (DTA). The thermodynamic parameters of decomposition of the complexes, namely the activation energy (E_a), enthalpy ($\Delta^{\ddagger}H$), entropy ($\Delta^{\ddagger}S$) and free energy ($\Delta^{\ddagger}G$), as well as the preexponential factor (A) were evaluated graphically using the Coats-Redfern relationship [(a) A. W. Coats, J. P. Redfern, *Nature*, 1964, **20**, 68; (b) E. Urbanovici, C. Popescu, E. Segal, *J. Ther. Anal. Calor.*, 1999, **58**, 683]:

$$\ln\{[-\ln(1-\alpha)]/T^2\} = -E_a/RT + \ln[AR/\varphi E_a],$$

where α is the fraction of the sample decomposed at temperature T, A is the pre-exponential factor, φ the heating rate, E_a the activation energy and R the gas constant. A plot of $\ln\{[-\ln(1-\alpha)]/T^2\}$ against 1/T gives a slope from which E_a was calculated, and A was determined from the intercept. The activation entropy ($\Delta^{\ddagger}S$), enthalpy ($\Delta^{\ddagger}H$) and free energy change ($\Delta^{\ddagger}G$) were calculated using the following equations:

$$\Delta^{\ddagger}S = 2.303 R \lg(Ah/kT_{s}),$$

$$\Delta^{\ddagger}H = E_{a} - RT_{s},$$

$$\Delta^{\ddagger}G = \Delta^{\ddagger}H - T_{s}\Delta^{\ddagger}S,$$

where k, h and T_s are the Boltzman constant, the Planck constant and the DTG peak temperature, respectively.

Supplementary Material (ESI) for Dalton Transactions This journal is © The Royal Society of Chemistry 2011

Fig. S1 TG and DTG curves of 1, 2, 4, 6 and 8.

Table S3 Thermal behaviours and kinetic p	parameters of 1, 2, 4, 6 and 8
---	--------------------------------

Compound	Temperature range (K)	% Weight loss found	DTG peak temperature (K)	$A(s^{-1})$	$\frac{E_{\rm a}}{(\rm kJ\cdot mol^{-1})}$	$\Delta^{\ddagger} H$ (kJ·mol ⁻¹)	$\frac{\Delta^{\ddagger}S}{(\mathbf{J}\cdot\mathbf{K}^{-1}\mathbf{mol}^{-1})}$	$\Delta^{\ddagger}G$ (kJ·mol ⁻¹)
1	470-568	66.0	527	3.3·10 ⁸	112	107	-87	153
	343-388	1.98	368	$9.2 \cdot 10^{-2}$	22.5	19.4	-267	118
2	466-504	1.78	484	0.21	31.5	27.5	-262	154
	520-593	17.8	575	62.6	55.8	51.0	-216	175
4	338-377	3.1	356	$5.8 \cdot 10^{-4}$	5.5	2.6	-308	112
	486-561	9.0	536	$1.1 \cdot 10^{-3}$	9.5	5.0	-306	169
	643-701	14.6	684	$4.1 \cdot 10^{-2}$	24.7	19.1	-279	210
6	491-574	31.8	551	$1.1 \cdot 10^{7}$	105	100	-115	163
	574-620	5.8	585	0.31	28.9	24.0	-260	176
8	414-517	82.5	499	$9.8 \cdot 10^4$	69.2	65.0	-154	142

Example of calculations for the thermal decomposition of 8.

i) Calculation of $1-\alpha$:

The initial sample weight: $m_0 = 5.268 \text{ mg.}$

8 decomposes at 414–517 K (Fig. S1, Table S3). Sample weight upon decomposition at 414 K: m = 5.147 mg. 5.147.100/5.268 = 97.7 %. Thus, $1-\alpha = 0.977$ at 414 K. Sample weight at 466 K: m = 4.160 mg. 4.160.100/5.268 = 79.0 %. $1 - \alpha = 0.790$ at 466 K. Sample weight at 495 K: m = 2.123 mg. 2.123.100/5.268 = 40.3 %. $1-\alpha = 0.403$ at 495 K. Sample weight at 499 K: m = 1.687 mg. 1.687.100/5.268 = 31.9 %. $1 - \alpha = 0.319$ at 499 K. Sample weight at 517 K: m = 0.799 mg. $0.799 \cdot 100/5.268 = 15.2$ %. $1-\alpha = 0.152$ at 517 K. *ii*) Calculation of the weight loss: Sample weight: $m_0 = 5.268$ mg. m = 5.147 mg at 414 K. m = 0.799 mg at 517 K. Weight loss = 5.147 - 0.799 = 4.348 mg. 4.348.100/5.268 = 82.53 %. (Table S3). *iii*) Calculation of $\ln\{[-\ln(1-\alpha)]/T^2\}$: $\ln\{[-\ln(1-\alpha)]/T^2\} = \ln\{[-\ln(0.977)]/414^2\} = -15.81 \text{ at } 414 \text{ K}; \text{ and } 1/T = 2.415 \cdot 10^{-3}$ $\ln\{[-\ln(1-\alpha)]/T^2\} = \ln\{[-\ln(0.790)]/466^2\} = -13.73 \text{ at } 466 \text{ K}; \text{ and } 1/T=2.150 \cdot 10^{-3}$ $\ln\{[-\ln(1-\alpha)]/T^2\} = \ln\{[-\ln(0.403)]/495^2\} = -12.50 \text{ at } 495 \text{ K}; \text{ and } 1/T = 2.020 \cdot 10^{-3}$ $\ln\{[-\ln(1-\alpha)]/T^2\} = \ln\{[-\ln(0.319)]/499^2\} = -12.29 \text{ at } 499 \text{ K}; \text{ and } 1/T = 2.000 \cdot 10^{-3}$ $\ln\{[-\ln(1-\alpha)]/T^2\} = \ln\{[-\ln(0.152)]/517^2\} = -11.86 \text{ at } 517 \text{ K}; \text{ and } 1/T = 1.930 \cdot 10^{-3}$

iv) The plot of $\ln\{[-\ln(1-\alpha)]/T^2\}$ versus 1/T (Fig. S2) gives the slope from which E_a can be calculated, and A can be determined from the intercept.

Supplementary Material (ESI) for Dalton Transactions This journal is © The Royal Society of Chemistry 2011

Fig. S2 Plot of $\ln\{[-\ln(1-\alpha)]/T^2\}$ *vs.* 1/T.

v) Calculation of E_a : $-E_a/R = -8320$ (Fig. S2). $-E_a/R = -8320 \Rightarrow E_a = 8320 \cdot 8.314 = 69172.48 \text{ J} \cdot \text{mol}^{-1} \approx 69.2 \text{ kJ} \cdot \text{mol}^{-1}$ (Table S3).

vi) Calculation of A: $\ln[AR/\varphi E_a] = +4.2591$ (Fig. S2).

Scan rate was 10.00°C/min and sample heated from 30.00°C to 800.00°C. $T = 273.15 + t (^{\circ}C)$ For instance, $T_1 = 273.15 + 30 = 303.15$ K; $T_2 = 273.15 + 40 = 313.15$ K; $T_3 = 273.15 + 50 = 323.15 \text{ K}; T_4 = 273.15 + 60 = 333.15 \text{ K};$ $\varphi = \Delta T / \Delta time = T_2 - T_1 / time_2 - time_1 = 313.15 - 303.15 / 2 min - 1 min =$ $= 313.15 - 303.15 / 120 \text{ s} - 60 \text{ s} = 0.16666 \text{ K/s} \approx 0.167 \text{ K/s}.$ $\varphi = \Delta T / \Delta time = T_4 - T_2 / time_4 - time_2 = 333.15 - 313.15 / 4 min - 2 min =$ $= 333.15 - 313.15 / 240 \text{ s} - 120 \text{ s} = 0.16666 \text{ K/s} \approx 0.167 \text{ K/s}.$ $\phi \approx 0.167$ K/s = constant. $\ln[AR/\varphi E_a] = +4.2591 \implies \ln[A \cdot 8.314/0.167 \cdot 69172] \implies A = 3.3 \cdot 10^8 \, s^{-1}$ (Table S3). *vii*) Calculation of $\Delta^{\ddagger}H$: T_s = 499 K (Fig. S1, DTG peak, Table S3). $\Delta^{\ddagger}H = E_{a} - RT_{s} = 69172 - 8.314 \cdot 499 = 65.0 \text{ kJ} \cdot \text{mol}^{-1}$ (Table S3). *viii*) Calculation of $\Delta^{\ddagger}S$: $\Delta^{\ddagger}S = 2.303Rlg(Ah/kT_s) = 2.303 \cdot 8.314lg(3.3 \cdot 10^8 \cdot 6.626 \cdot 10^{-34}/1.38 \cdot 10^{23} \cdot 499) = -154 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$ (Table S3).

ix) Calculation of $\Delta^{\ddagger}G$: $\Delta^{\ddagger}G = \Delta^{\ddagger}H - T_{s}\Delta^{\ddagger}S = 65.0 - 499 \cdot (-0.1536) = 142 \text{ kJ} \cdot \text{mol}^{-1}$ (Table S3).

Supplementary Material (ESI) for Dalton Transactions This journal is © The Royal Society of Chemistry 2011

Fig. S3 TG and DTG curves of [Cu₂(μ-L₁)₂(CH₃OH)₂] (a), **9** (b), **10** (c) and **13** (d).

X-ray analyses

(b)

(c)

(d)

(e)

(f)

Supplementary Material (ESI) for Dalton Transactions This journal is © The Royal Society of Chemistry 2011

(g)

Fig. S4 Packing diagrams of Cu-ADB complexes 9 (a), 10 (b), 11 (c), 12 (d), 13 (e), 14 (f), 15 (g).

Catalytic activity of the complexes

_	~ .	$n(H_2O_2)/$	n(HNO ₃)/	Yield ^b of	Yield ^b of products, %		
Entry	Cu catalyst	n(Cat)	n(Cat)	Alcohol	Ketone	Total ^c	
1	9	750	0	5.2	6.5	11.7	23.8
2	9	750	10	5.4	6.5	11.9	24.2
3	9	750	20	4.7	7.6	12.3	25.0
4	9	750	30	4.3	7.2	11.5	23.4
5	9	750	60	4.0	6.3	10.3	21.0
6	9	500	10	3.1	4.6	7.7	15.7
7	9	1000	10	6.9	9.9	16.8	34.2
8	9	1250	10	8.7	10.8	19.5	39.7
9	10	750	0	2.1	2.5	4.6	4.6
10	10	750	10	3.4	4.5	7.9	7.9
11	10	750	20	3.6	4.7	8.3	8.3
12	10	750	30	3.2	5.3	8.5	8.5
13	10	750	60	3.1	5.8	8.9	8.9
14	10	500	10	3.3	3.5	6.8	6.8
15	10	1000	10	4.3	7.1	11.4	11.4
16	10	1250	10	5.7	6.5	12.2	12.2
17	10	1000	10	4.4	7.0	11.4	326
18	12	750	0	2.8	4.1	6.9	12.1
19	12	750	10	6.7	9.1	15.8	27.8
20	12	750	20	6.2	9.2	15.4	27.1
21	12	750	30	6.4	9.2	15.6	27.4
22	12	750	60	5.5	7.5	13.0	22.8
23	12	500	10	4.7	5.7	10.4	18.3
24	12	1000	10	9.3	10.9	20.2	35.5
25	12	1250	10	10.5	12.0	22.5	39.5
26	12	1000	10	8.9	10.9	19.8	566
27	13	750	0	4.2	5.8	10.0	10.3
28	13	750	10	5.3	6.3	11.6	11.9
29	13	750	20	5.3	6.7	12.0	12.3
30	13	750	30	5.2	7.2	12.4	12.7

Table S4 Peroxidative oxidation of cyclohexane to cyclohexanol and cyclohexanone^a

	Supplementary Material (ESI) for Dalton Transactions This journal is © The Royal Society of Chemistry 2011									
31	13	750	60	4.8	6.7	11.5	11.8			
32	13	500	10	3.8	4.5	8.3	8.5			
33	13	1000	10	7.2	9.1	16.3	16.7			
34	13	1250	10	7.4	9.5	16.9	17.4			
35	$[Cu_2(\mu-L^1)_2(CH_3OH)_2]^{8e}$	1000	10	7.1	16.6	23.7	23.7			
36	$Cu(NO_3)_2^e$	1000	10	1.6	3.8	5.4	5.4			
37	2 , 4 or 6 ^{<i>e</i>}	1000	10	-	-	<i>f</i>	-			
38	Blank	1000	10	-	-	_ <i>f</i>	-			

.

^{*a*} Selected data; reaction conditions: C_6H_{12} (1 mmol), Cu-catalyst (0.35-10.0 µmol), MeCN/H₂O 4 mL, n(HNO₃)/n(Cat) = 0-60, H₂O₂ (5.0-12.5 mmol added as an aqueous 30% solution), reaction time: 6 h, 298 K. ^{*b*} Moles of product/100 moles of C_6H_{12} (Alcohol = cyclohexanol, Ketone = cyclohexanone). ^{*c*} Cyclohexanol + cyclohexanone. ^{*d*} Overall TON values (moles of products/mole of catalyst). ^{*e*} For comparative purposes, Cu(NO₃)₂ and ligands **2**,**4** and **6** were used as catalysts (10.0 µmol). ^{*f*} Traces, < 0.3 %.

Fig. S5 Effect of the nitric acid-to-catalyst molar ratio on the total yield of products in the cyclohexane oxidation catalyzed by complexes 12(1), 9(2), 13(3) and 10(4). Reaction conditions are those of Table S4.

Fig. S6 Effect of the oxidant-to-catalyst molar ratio on the total yield of products in the cyclohexane oxidation catalyzed by complexes **12** (1), **9** (2), **13** (3) and **10** (4). Reaction conditions are those of of Table S4.

Supplementary Material (ESI) for Dalton Transactions This journal is © The Royal Society of Chemistry 2011