Electronic Supplementary Information for

Indenyl-Functionalised Triethylborane Adduct of *N*-Heterocyclic Carbene: Stepwise Coordination of Indenyl and NHC Ligands toward Molybdenum Fragment

Daichi Takaki,^a Tetsuya Okayama,^a Hiroshi Shuto,^a Sawako Matsumoto,^a Yoshitaka Yamaguchi,*^a and Shinya Matsumoto^b

^a Department of Advanced Materials Chemistry, Graduate School of Engineering, Yokohama National University, Tokiwadai 79-5, Hodogaya-ku, Yokohama 240-8501, Japan
 ^b Course of Environmental Science, Faculty of Education and Human Science, Yokohama National University, Tokiwadai 79-2, Hodogaya-ku, Yokohama 240-8501, Japan

Contents

- S1. Experimental
 - S1-1. General procedures
 - S1-2. Preparation of 1a and 1b
 - S1-3. Preparation of 2a and 2b
 - S1-4. Preparation of 4a
 - S1-5. Preparation of 5a
 - S1-6. Preparation of 7a

S2. Single-crystal X-ray crystallography S2-1. Experimental procedure for X-ray analyses Table S1. Summery of Crystal Data for Complexes 4a, 5a, and 7a Figure S1. ORTEP drawing of 4a Figure S2. ORTEP drawing of 5a Figure S3. ORTEP drawing of 7a

S3. References

S1. Experimental

S1-1. General procedures

All manipulations involving air- and moisture-sensitive organometallic compounds were carried out under an atmosphere of dry argon or nitrogen, which was purified by SICAPENT (Merck Co., Inc.), by using a standard Schlenk tube or high vacuum techniques. All solvents were distilled over appropriate drying agents prior to use. β -Bromoethylindene,¹ 1-isopropylimidazole,² and molybdenum complexes **3**³ and **6**⁴ were prepared according to literature methods. Another reagents employed in this research were commercially available and used without further purification.

IR spectra were recorded on a HORIBA FT-730 spectrometer. ¹H, ¹³C{¹H} and ¹¹B{¹H} NMR spectra were recorded on JEOL EX-270, AL-400, and BRUKER DRX-300, DRX-500, and AVANCE III 600 spectrometers at ambient temperature, unless otherwise mentioned. ¹H and ¹³C{¹H} NMR chemical shifts were recorded in ppm relative to internal Me₄Si. ¹¹B{¹H} NMR chemical shifts were recorded in ppm relative to external BF₃·OEt₂. All coupling constants were recorded in Hz. Multiplicity is indicated by s (singlet), d (doublet), t (triplet), q (quartet), sept (septet), and m (multiplet). Elemental analyses were performed on a Perkin-Elmer 240C. High-resolution mass spectra (HRMS) were obtained using the electrospray ionization (ESI) method with HITACHI NanoFrontier LD.

S1-2. Preparation of 1a and 1b

1-Methylimidazole (391 mg, 4.76 mmol) and β-bromoethylindene (1036 mg, 4.64 mmol) were put in a Schlenk tube. After stirring at room temperature for ca. 48 h, the product was washed with ether (10 mL x 4) and then dried in vacuo to give compound **1a** as a white solid (863 mg, 2.83 mmol, 61%). ¹H NMR (in CDCl₃): δ 3.21 (t, *J* = 7.2 Hz, 2H, indenyl-CH₂CH₂-N), 3.32 (s, 2H, CH₂ in indenyl), 4.01 (s, 3H, N-CH₃), 4.67 (t, *J* = 7.2 Hz, 2H, N-CH₂CH₂-indenyl), 6.37 (s, 1H, CH in indenyl), 7.19 (t, *J* = 7.3 Hz, 1H, CH in indenyl), 7.26 (t, *J* = 7.3 Hz, 1H, CH in indenyl), 7.36 (d, *J* = 7.5 Hz, 1H, CH in imidazole), 7.43 (d, *J* = 7.3 Hz, 1H, CH in imidazole), 7.46 (broad-s, 1H, CH in indenyl), 7.54 (broad-s, 1H, CH in indenyl), 10.26 (s, 1H, N-CH-N). ¹³C{¹H} NMR (in CDCl₃): δ 28.5 (indenyl-CH₂CH₂-N), 36.4 (N-CH₃), 37.9 (CH₂ in indenyl), 48.4 (N-CH₂-CH₂-indenyl), 118.5 (CH in imidazole), 122.3, 123.2 (CH in indenyl), 123.8 (CH in imidazole), 125.0, 126.1, 131.2 (CH in indenyl), 137.1 (N-CH-N), 138.4, 143.6, 143.9 (quaternary*C* in indenyl). HRMS (ESI) calcd for

 $C_{15}H_{17}N_2$ [M–Br]⁺: 225.1386, found: 225.1386.

Compound **1b** was prepared from 1-isopropylimidazole (304 mg, 2.76 mmol) and β-bromoethylindene (635 mg, 2.85 mmol) in the same manner as that for **1a**. Compound **1b** was isolated as orange oil (579 mg, 1.74 mmol, 63%). ¹H NMR (in CDCl₃): δ 1.53 (d, J = 6.9Hz, 6H, CH₃ in *i*-Pr), 3.24 (t, J = 6.9 Hz, 2H, indenyl-CH₂CH₂-N), 3.33 (s, 2H, CH₂ in indenyl), 4.72 (t, J = 6.9 Hz, 2H, N-CH₂CH₂-indenyl), 4.78 (sept, J = 6.9Hz, 1H, CH in *i*-Pr), 6.41 (s, 1H, CH in indenyl), 7.19 (t, J = 7.6 Hz, 1H, CH in indenyl), 7.24 (t, J = 7.6 Hz, 1H, CH in indenyl), 7.34 (d, J = 7.6 Hz, 1H, CH in imidazole), 7.43 (d, J = 7.3 Hz, 1H, CH in imidazole), 7.46-7.48 (m, 2H, CH in indenyl), 10.43 (s, 1H, N-CH-N). ¹³C {¹H} NMR (in CDCl₃): δ 22.9 (CH₃ in *i*-Pr), 28.5 (indenyl-CH₂CH₂-N), 37.9 (CH₂ in indenyl), 48.7 (N-CH₂-CH₂-indenyl), 53.1 (CH in *i*-Pr), 118.5 (CH in imidazole), 119.7, 122.5 (CH in indenyl), 123.9 (CH in imidazole), 125.0, 126.1, 131.4 (CH in indenyl), 135.8 (N-CH-N), 138.6, 143.8, 143.9 (quaternaryC in indenyl). HRMS (ESI) calcd for C₁₇H₂₁N₂ [M–Br]⁺: 253.1699, found: 253.1705.

S1-3. Preparation of 2a and 2b

Compound 1a (3710 mg, 12.16 mmol) was put in a Schlenk tube, which was attached to a high-vacuum line. THF (ca. 50 mL) was added by a trap-to-trap-transfer technique at -78 °C. At this temperature, LiBEt₃H (12.2 mL of its 1.0 M THF solution, 12.2 mmol) was added by syringe. Then the reaction mixture was allowed to warm to room temperature for 12 h. After removing the volatiles under reduced pressure, the residual oil was extracted with toluene (30 mL). The volatiles were removed under reduced pressure to give 2a (3743 mg, 11.61 mmol, 95%). ¹H NMR (in CDCl₃): δ 0.50 (q, J = 7.6 Hz, 6H, BCH₂CH₃), 0.67 (t, J = 7.6 Hz, 9H, BCH₂CH₃), 3.03 (broad-t, J = 7.6 Hz, 2H, indenyl-CH₂CH₂-N), 3.35 (d, J = 1.5 Hz, 2H, CH₂ in indenyl), 3.85 (s, 3H, N-CH₃), 4.57 (t, J = 7.6 Hz, 2H, N-CH₂CH₂-indenyl), 6.26 (broad-s, 1H, CH in indenvl), 6.62 (d, J = 2.0 Hz, 1H, CH in imidazole), 6.65 (d, J = 2.0 Hz, 1H, CH in imidazole), 7.21-7.49 (m, 4H, CH in indenyl). ${}^{13}C{}^{1}H{}$ NMR (in CDCl₃): δ 11.5 (BCH₂CH₃), 14.4 (broad, BCH₂CH₃), 30.3 (indenyl-CH₂CH₂-N), 37.9 (N-CH₃), 38.0 (CH₂ in indenyl), 47.6 (N-CH₂-CH₂-indenyl), 118.6 (CH in indenyl), 119.8, 121.6 (CH in imidazole), 123.9, 124.8, 126.1, 130.2 (CH in indenyl), 140.1, 144.1, 144.4 (quaternaryC in indenyl), 175.9 (broad, N-C-N). ¹¹B{¹H} NMR (in CDCl₃): δ -11.5. HRMS (ESI) calcd for C₁₅H₁₇N₂ [M–BEt₃+H]⁺: 225.1386, found: 225.1395.

Compound **2b** was prepared from **1b** (705 mg, 2.12 mmol) and LiBEt₃H (2.2 mL of its 1.0 M THF solution, 2.2 mmol) in the same manner as that for **2a**. Compound **2b** was isolated as a yellow solid (597 mg, 1.70 mmol, 80%). ¹H NMR (in CDCl₃): δ 0.51 (q, *J* = 7.3 Hz, 6H, BCH₂CH₃), 0.68 (t, *J* = 7.3 Hz, 9H, BCH₂CH₃), 1.38 (d, *J* = 6.6 Hz, 6H, CH₃ in *i*-Pr), 3.03 (dt, *J* = 1.3, 7.9 Hz, 2H, indenyl-CH₂CH₂-N), 3.36 (d, *J* = 1.3 Hz, 2H, CH₂ in indenyl), 4.56 (t, *J* = 7.9 Hz, 2H, N-CH₂CH₂-indenyl), 5.46 (sept, *J* = 6.6 Hz, 1H, CH in *i*-Pr), 6.26 (broad-s, 1H, CH in indenyl), 6.66 (d, *J* = 2.0 Hz, 1H, CH in imidazole), 6.85 (d, *J* = 2.0 Hz, 1H, CH in imidazole), 7.18-7.50 (m, 4H, CH in indenyl). ¹³C{¹H} NMR (in CDCl₃): δ 11.6 (BCH₂CH₃), 14.4 (broad, BCH₂CH₃), 23.8 (CH₃ in *i*-Pr), 30.7 (indenyl-CH₂CH₂-N), 38.0 (CH₂ in indenyl), 47.7 (N-CH₂-CH₂-indenyl), 48.7 (CH in *i*-Pr), 115.4 (CH in imidazole), 118.6 (CH in indenyl), 120.9 (CH in imidazole), 123.8, 124.8, 126.1, 130.0 (CH in indenyl), 140.2, 144.1, 144.4 (quaternary*C* in indenyl), 174.3 (broad, N-*C*-N). ¹¹B{¹H} NMR (in CDCl₃): δ -11.3 . HRMS (ESI) calcd for C₁₇H₂₁N₂ [M–BEt₃+H]⁺: 253.1699, found: 253.1710.

S1-4. Preparation of 4a

A solution of complex 3 (404 mg, 1.24 mmol) in THF (20 mL) was cooled to -78 °C, and then a THF solution of lithiated 2a, which was prepared by the reaction of 2a (439 mg, 1.36 mmol) with *n*-BuLi (0.91 mL of its 1.5 M hexane solution, 1.37 mmol) at -78 °C, was added. The reaction mixture was allowed to warm to room temperature. After several hours, the volatiles were removed under reduced pressure. The residual solid was extracted with toluene (25 mL) and then the filtrate was evaporated off under vacuum. The yellow solid was washed with pentane (10 mL x 2) and dried in vacuo to yield 4a (569 mg, 1.08 mmol, 87%). Anal. Calcd for C₂₇H₃₇BMoN₂O₂: C, 61.38; H, 7.06; N, 5.30%. Found: C, 61.46; H, 6.85; N, 5.48%. IR (v_{CO} , KBr) 1950, 1856. ¹H NMR (in CDCl₃): δ -0.77 (s, 1H, *anti*-CH₂ in metallyl), -0.73 (s, 1H, anti-CH₂ in metallyl), 0.50 (q, J = 6.6 Hz, 6H, BCH₂CH₃), 0.67 (t, J = 6.6 Hz, 9H, BCH₂CH₃), 1.42 (s, 3H, CH₃ in metallyl), 3.21-3.40 (m, 4H, syn- CH₂ in metallyl + indenyl-CH₂CH₂-N), 3.86 (s, 3H, N-CH₃), 4.43-4.67 (m, 2H, N-CH₂CH₂-indenyl), 5.52 (d, J = 2.6 Hz, 1H, CH in indenyl), 5.87 (d, J = 2.6 Hz, 1H, CH in indenyl), 6.62 (d, J = 2.0 Hz, 1H, CH in imidazole), 6.67 (d, J = 2.0 Hz, 1H, CH in imidazole), 6.93-7.15 (m, 4H, CH in indenyl). ¹³C{¹H} NMR (in CDCl₃): δ 11.4 (BCH₂CH₃), 14.3 (broad, BCH₂CH₃), 23.2 (CH₃ in metallyl), 31.2 (indenyl-CH₂CH₂-N), 37.8 (N-CH₃), 50.2 (N-CH₂CH₂-indenyl), 57.3 (CH₂) in metallyl), 57.5 (CH₂ in metallyl), 75.8, 89.4 (CH in indenyl), 94.8 (CCH₃ in metallyl),

108.3 (quaternary*C* in indenyl), 112.3 (quaternary*C* in indenyl, overlapped), 120.1, 121.9, 122.6, 124.5, 124.7, 125.1 (*CH* in indenyl + *C*H in imidazole), 176.6 (broad, N-*C*-N), 240.3, 241.3 (*CO*). ¹¹B{¹H} NMR (in CDCl₃): δ -10.9.

S1-5. Preparation of 5a

Complex 4a (61 mg, 0.12 mmol) and pyridine (5 mL) were put in a Schlenk tube. After being refluxed for 4 h, the volatiles were removed under reduced pressure. The residual solid was dissolved in CH₂Cl₂ (ca 3 mL). This solution was loaded on an Al₂O₃ column (ϕ 10 x 40 mm) and eluted with CH₂Cl₂/hexane (1/1). The red band was collected and dried in vacuo to give 5a as a red solid (39 mg, 0.097 mmol, 81%). Anal. Calcd for C₂₀H₂₂MoN₂O: C, 59.70; H, 5.51; N, 6.96%. Found: C, 59.39; H, 5.53; N, 6.79%. IR (v_{CO}, KBr) 1794, 1773. ¹H NMR (in CDCl₃): δ -1.24 (s, 1H, anti-CH₂ in metallyl), -0.17 (s, 1H, anti-CH₂ in metallyl), 1.63 (s, 3H, CH₃ in metallyl), 1.90 (d, J = 3.6 Hz, 1H, syn-CH₂ in metallyl), 2.22 (ddd, J = 14.2, 12.2, 3.6Hz, 1H, indenyl-CH₂CH₂-N), 2.85 (d, J = 3.6 Hz, 1H, syn-CH₂ in metallyl), 3.32 (ddd, J =14.2, 3.3, 2.3 Hz, 1H, indenyl-CH₂CH₂-N), 3.50 (s, 3H, N-CH₃), 4.15-4.34 (m, 2H, N-CH₂CH₂-indenyl), 5.21 (d, J = 2.6 Hz, 1H, CH in indenyl), 5.44 (d, J = 2.6 Hz, 1H, CH in indenyl), 6.82 (d, J = 2.0 Hz, 1H, CH in imidazole), 7.05 (d, J = 2.0 Hz, 1H, CH in imidazole), 6.84-7.12 (m, 4H, CH in indenvl). ${}^{13}C{}^{1}H$ NMR (in CDCl₃): δ 24.7 (CH₃ in metallyl), 27.4 (indenyl-CH₂CH₂-N), 39.6 (N-CH₃), 52.4 (N-CH₂CH₂-indenyl), 53.8 (CH₂ in metallyl), 59.8 (*C*H₂ in metallyl), 73.8, 89.6 (*C*H in indenyl), 93.6 (quaternary*C* in metallyl), 103.9, 108.3, 110.8 (quaternary C in indenyl), 121.2, 121.8, 122.2, 122.5, 123.2, 127.1 (CH in indenyl + CH in imidazole), 201.0 (N-C-N), 260.6 (CO).

S1-6. Preparation of 7a

Complexes **4a** (91 mg, 0.17 mmol) and **6** (80 mg, 0.17 mmol) ware put in a Schlenk tube, which was attached to a high-vacuum line. Heptane (ca. 10 mL) was added by a trap-to-trap-transfer technique at -78 °C. After being refluxed for 2.5 h, a yellow solid was precipitated. The resulting yellow precipitates were isolated by filtration, washed with hexane, and dried in vacuo to give **7a** (102 mg). The yellow filtrate was cooled to form further yellow precipitates, which was collected and dried in vacuo to give **7a** (12 mg). Complex **6a** was totally obtained in 82% yield (114 mg, 0.14 mmol). Anal. Calcd for $C_{39}H_{38}Mo_2N_4O_4$: C, 57.22; H, 4.68; N, 6.84%. Found. C, 57.33; H, 4.68; N, 6.85%. IR (v_{CO} , KBr) 1949, 1914,

1874, 1822. ¹H NMR (in CDCl₃): δ -0.84 (s, 1H, *anti*-CH₂ in metallyl), -0.73 (s, 1H, *anti*-CH₂ in metallyl), 1.39 (s, 3H, *CH*₃ in metallyl), 1.66 (d, J = 9.6 Hz, 1H, *anti*-CH₂ in allyl), 1.77 (d, J = 9.6 Hz, 1H, *anti*-CH₂ in allyl), 3.11-3.22 (m, 1H, indenyl-CH₂CH₂-N), 3.32 (d, J = 3.3 Hz, 1H, *syn*-CH₂ in metallyl), 3.37 (d, J = 3.3 Hz, 1H, *syn*-CH₂ in metallyl), 3.31-3.44 (m, 1H, indenyl-CH₂CH₂-N), 3.44 (s, 3H, N-CH₃), 3.65-3.97 (m, 2H, N-CH₂CH₂-indenyl), 4.00-4.25 (m, 3H, *syn*-CH₂ in allyl + CH in allyl), 5.37 (broad-s, CH in indenyl), 5.82 (d, J = 3.0 Hz, 1H, CH in indenyl), 6.71–7.10 (m, 16H, Ph + CH imidazole + CH in indenyl), 8.37 (s, 1H, CH in amidinato). ¹³C {¹H} MMR (in CDCl₃): δ 23.2 (CH₃ in metallyl), 30.0 (indenyl-CH₂CH₂-N), 38.9 (N-CH₃), 51.8 (N-CH₂CH₂-indenyl), 57.0 (CH₂ in metallyl), 57.4 (CH₂ in metallyl), 59.1, 61.2 (CH₂ in allyl), 75.4 (CH in indenyl), 85.2 (CH in allyl), 89.0 (CH in indenyl-5ring), 94.9 (quaternaryC in metallyl), 108.1, 112.2, 112.2 (quaternaryC in indenyl), 118.4, 118.8, 120.4, 121.2, 121.5, 122.9, 122.9, 124.3, 124.4, 124.8, 129.0, 129.1, 147.6, 147.9 (Ph + CH in indenyl + CH in indenyl + CH in imidazole), 154.7 (amidinato-CH), 193.0 (N-C-N), 229.4, 229.7, 240.4, 241.4 (CO).

S2. Single-crystal X-ray crystallography

S2-1. Experimental procedure for X-ray analyses

Suitable single crystals were obtained by recrystallization from hexane (4a) or from toluene/hexane (5a and 7a) and are individually mounted on glass fibers. Indexing was performed from 3 oscillations, which were exposed for 30 seconds (4a), 45 seconds (5a), and 90 seconds (7a), respectively, using a Rigaku RAXIS-RAPID Imaging Plate diffractometer with graphite-monochromated Cu- $K\alpha$ radiation ($\lambda = 1.54187$ Å). The crystal-to-detector distance was 127.40 mm. The data were collected at a temperature of 23 ± 1 °C to a maximum 2 θ value of 136.5 °. The collected oscillation images were 24 for 4a, 24 for 5a, and 36 for 7a. Readout was performed in the 0.100 mm pixel mode.

Crystallographic data and the results of measurement are summarized in Table S1. The structures were solved by direct methods (SIR92)⁵ for all complexes, and expanded using Fourier techniques (DIRDIF99).⁶ Least-square refinements were carried out using SHELXL97.⁷ All of the non-hydrogen atoms were refined anisotropically. Hydrogen atoms were introduced at the ideal positions and refined using the riding model. All calculations were performed using the CrystalStructure crystallographic software package.⁸

	4a	5a	7a
Empirical Formula	$C_{27}H_{37}BMoN_2O_2$	$C_{20}H_{22}MoN_2O$	$C_{39}H_{38}Mo_2N_4O_4$
Formula weight	528.35	402.35	818.63
Crystal color, habit	yellow, needle	red, plate	yellow, needle
Crystal size/mm	0.50 x 0.25 x 0.18	0.25 x 0.18 x 0.08	0.20 x 0.10 x 0.08
Crystal system	monoclinic	monoclinic	monoclinic
Space group	$P2_1/c$ (#14)	$P2_1/c$ (#14)	$P2_1/a$ (#14)
Lattice parameters $a/Å$	6.8287(15)	8.7708(11)	7.411(2)
$b/{ m \AA}$	26.711(5)	16.5056(17)	38.544(8)
$c/{ m \AA}$	14.680(3)	12.1411(13)	13.169(3)
β/°	97.025(5)	91.388(10)	76.26(2)
$V/\text{\AA}^3$	2657.6(9)	1757.1(3)	3654.0(15)
Ζ	4	4	4
$D_{\rm c}/{ m g~cm^{-3}}$	1.320	1.521	1.488
F_{000}	1104.00	824.00	1664.00
μ (Cu- $K\alpha$)/cm ⁻¹	42.118	61.458	59.673
Reflection measured	22903	13487	29621
Independent reflections (R_{int})	4646 (0.055)	3066 (0.073)	6121 (0.111)
No. variables	299	218	443
Reflection/parameter ratio	15.54	14.06	13.82
Residuals: R; Rw	0.0538; 0.1130	0.0419; 0.0832	0.1616; 0.1044
Residuals: $R1 (I > 2.0\sigma(I))$	0.0393	0.0334	0.0594
Goodness of fit indicator	1.076	1.050	0.870
$\delta \rho_{\rm max,\ min}/{ m e} { m \AA}^{-3}$	0.59, -0.46	0.44, -0.65	0.74, -0.45

 Table S1. Summery of Crystal Data for Complexes 4a, 5a, and 7a

Figure S1. ORTEP drawing of **4a** (30% probability of thermal ellipsoids) showing the numbering system. All hydrogen atoms are omitted for clarity.

Figure S2. ORTEP drawing of **5a** (30% probability of thermal ellipsoids) showing the numbering system. All hydrogen atoms are omitted for clarity.

Figure S3. ORTEP drawings of **7a** (30% probability of thermal ellipsoids) showing the numbering system. All hydrogen atoms are omitted for clarity.

S3. References

- 1 M. Deppner, R. Burger, H. G. Alt, J. Organomet. Chem., 2004, 689, 1194-1211.
- 2 O. V. Starikova, G. V. Dolgushin, L. I. Larina, T. N. Komarova and V. A. Lopyrev, *Arkivoc*, 2003 (xiii), 119-124.
- 3 (a) R. G. Hayter, J. Organomet. Chem., 1968, 13, P1-P3; (b) H. tom Dieck and H. Friedel,
 J. Organomet. Chem., 1968, 14, 375-385.
- 4 Y. Yamaguchi, K. Ogata, K. Kobayashi and T. Ito, *Inorg. Chim. Acta*, 2004, **357**, 2657-2668.
- 5 A. Altomare, G. Cascarano, C. Giacovazzo, A. Guagliardi, M. C. Burla, G. Polidori and M.Camalli, *J. Appl. Cryst.*, 1994, 27, 435.
- 6 P. T. Beurskens, G. Admiraal, G. Beurskens, W. P. Bosman, R. de Gelder, R. Israel and J.M.M. Smits, The DIRDIF-99 program system, Technical Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands, DIRDIF99; 1999.
- G. M. Sheldrick, Program for the Refinement of Crystal Structures. University of Göttingen, Germany, SHELX97; 1997.
- 8 Crystal Structure Analysis Package, Rigaku and Rigaku Americas, CrystalStructure 3.8; 2000-2007.