Synthesis, Characterization, and DFT Studies of Thione and Selone Cu(I) Complexes with Variable Coordination Geometries

Martin M. Kimani, Craig A. Bayse, and Julia L. Brumaghim*

SUPPLEMENTARY INFORMATION

Crystal packing diagrams for $Cu_4(\mu-dmise)_4(\mu-I)_2I_2$ (1) and $CuI(dmit)_2$ (3a) (Fig S1-S2), XRD powder patterns for copper complexes 1, 2, 3, 4, 5, 6, 7, and 8 (Fig S3-S12), cyclic voltammograms for all copper complexes (Fig S13), and DPV voltammograms for tetrameric complexes 1 and 6 (Figs. S14-S15).

Figure S1. Crystal packing diagram of $Cu_4(\mu$ -dmise)_4(μ -I)_2I₂ (1) along the *c*-axis depicting short contact interactions between Se and H atoms.

Figure S2. Crystal packing diagram of $CuI(dmit)_2$ (**3a**) along the *a*-axis depicting short contact interactions between Se and H atoms.

Figure S3. Powder X-ray diffraction pattern of A) $Cu_4(\mu-dmise)_4(\mu-I)_2I_2$ (1), vs. simulated powder pattern B) for $Cu_4(\mu-dmise)_4(\mu-I)_2I_2$ (1).

Figure S4. Powder X-ray diffraction pattern for A) $CuI(dmise)_2$ (2), vs. simulated powder pattern for B) $CuI(dmise)_2$ (2).

Figure S5. Experimental powder X-ray diffraction pattern of A) $Cu_4(\mu$ -dmise)_4(μ -I)_2I_2 (1), vs. simulated powder pattern for B) $Cu_4(\mu$ -dmise)_4(μ -I)_2I_2 (1), and C) CuI(dmise)_2 (2).

Figure S6. Powder X-ray diffraction pattern for A) CuI(dmit)₂ (**3b**) vs. simulated powder pattern for B) CuI(dmit)₂ (**3b**).

Figure S7. Powder X-ray diffraction pattern for A) $CuI(dmit)_2$ (3a) vs. simulated powder pattern for B) $CuI(dmit)_2$ (3a).

Figure S8. Experimental powder x-ray diffraction pattern of A) $Cu_4(\mu-dmise)_4(\mu-Br)_2Br_2$ (6) vs. simulated powder pattern B) for $Cu_4(\mu-dmise)_4(\mu-Br)_2Br_2$ (6).

Figure S9. Experimental powder x-ray diffraction pattern of B) CuBr(dmise)₂(**8**), vs. simulated powder pattern A) for CuBr(dmise)₂(**8**).

Figure S10. Experimental powder x-ray diffraction pattern of A) $Cu_4(\mu-dmise)_4(\mu-Br)_2Br_2$ (6), vs. simulated powder pattern B) for $Cu_4(\mu-dmise)_4(\mu-Br)_2Br_2$ (6), and C) $CuBr(dmise)_2$ (8).

Figure S11. Experimental powder X-ray diffraction pattern of A) CuCl(dmit)₂ (**4**), vs. simulated powder pattern for B) CuCl(dmit)₂ (**4**).

Figure S12. Experimental powder X-ray diffraction pattern of A) CuCl(dmise)₂ (**5**), vs. simulated powder pattern for B) CuCl(dmise)₂ (**5**).

Figure S13. Cyclic voltammetry scans for A) CuCl(dmit)₂, B) CuCl(dmise)₂, C) CuBr(dmit)₂, D) CuBr(dmise)₂, E) CuI(dmit)₂ **3a**, F) CuI(dmit)₂ **3b**. All data collected with 10⁻³ M complex in acetonitrile.

Figure S13 (continued). Cyclic voltammetry scans for G) mixed *trans*- and *cis*-CuI(dmit)₂ (**3a** and **3b**), H) CuI(dmise)₂, I) Cu₄(μ -dmise)₄(μ -Br)₂Br₂, J) Cu₄(μ -dmise)₄(μ -I)₂I₂. All data collected with 10⁻³ M complex in acetonitrile.

Figure S14. Differential pulse voltammograms: A) positive scan of $Cu_4(\mu_4\text{-dmise})(\mu\text{-Br})_2Br_2$ (6); B) negative scan of $Cu_4(\mu_4\text{-dmise})(\mu\text{-Br})_2Br_2$ (6). DPV data were collected at a concentration of 1 mM in acetonitrile.

Figure S15. Differential pulse voltammograms: A) positive scan of $Cu_4(\mu_4-dmise)(\mu-I)_2I_2$ (1); B) negative scan of $Cu_4(\mu_4-dmise)(\mu-I)_2I_2$ (1). DPV data were collected at a concentration of 1 mM in acetonitrile.