Electronic Supplementary Information

A Homobimetallic Complex of Chromium(0) with a σ -borane Component

Barun Bera, Yogesh P. Patil, Munirathinam Nethaji and Balaji R. Jagirdar*

Department of Inorganic & Physical Chemistry, Indian Institute of Science, Bangalore 560 012,

India

Figure S1. ¹H NMR spectrum (CDCl₃, 293 K) of (η^6 -C₆H₅CH₂NMe₂·BH₃)Cr(CO)₃ (2)

Figure S2. ¹H{¹¹B} NMR spectrum(CDCl₃, 293 K) of $(\eta^{6}-C_{6}H_{5}CH_{2}NMe_{2} \cdot BH_{3})Cr(CO)_{3}$ (2)

Figure S3. ¹¹B (bottom) and ¹¹B{¹H} (top) NMR spectra (CDCl₃, 293 K) of (η^6 -C₆H₅CH₂NMe₂·BH₃)Cr(CO)₃ (2)

Figure S4. ¹³C NMR spectrum (CDCl₃, 293 K) of $(\eta^6$ -C₆H₅CH₂NMe₂·BH₃)Cr(CO)₃ (2)

Figure S5. IR spectrum of $(\eta^6-C_6H_5CH_2NMe_2 \cdot BH_3)Cr(CO)_3$ (2)

Figure S6. VT ¹H NMR spectral stack plot of the σ -borane region of $(\eta^1 - (\eta^6 - C_6H_5CH_2NMe_2 - BH_2 - H))Cr(CO)_2$ (3) in toluene- d_8

Figure S7. ¹H NMR spectrum (toluene- d_8 , 288 K) of (η^6 -C₆H₅CH₂NMe₂·BH₂HCr(CO)₅)Cr(CO)₃ (**4**)

Figure S8. ¹¹B NMR spectrum (toluene- d_8 , 288 K) of (η^6 -C₆H₅CH₂NMe₂·BH₂HCr(CO)₅)Cr(CO)₃ (**4**)

¹³C NMR spectrum of 4

In the ¹³C NMR spectrum of the σ -borane complex **4**, recorded at 263 K, two carbonyl signals at δ 216 ppm and δ 224 ppm were assigned to the *cis*- and *trans*-CO ligands respectively, of the Cr(*C*O)₅ unit. The –N*Me*₂ group appears at δ 50.3 ppm which was upfield shifted from that of the starting complex **2**. The –*C*H₂– group appears at δ 67.1 ppm. In the ¹¹B NMR spectrum of the σ -borane complex **4**, the presence of a broad signal at δ –14.9 ppm, which is about 6 ppm upfield shifted from that of the starting complex **2**, fulfils the typical ¹¹B NMR spectral characteristics of a σ -borane complex.

Figure S9. ¹³C NMR spectrum (toluene- d_8 , 288 K) of (η^6 -C₆H₅CH₂NMe₂·BH₂HCr(CO)₅)Cr(CO)₃ (**4**)

Figure S10. Variable temperature ¹H NMR spectral stack plot (toluene- d_8) (high field region) of (η^6 -C₆H₅CH₂NMe₂·BH₂HCr(CO)₅)Cr(CO)₃ (**4**)

Figure S11. VT ¹H{¹¹B} NMR spectral stack plot (toluene- d_8) (high field region) of (η^6 -C₆H₅CH₂NMe₂·BH₂HCr(CO)₅)Cr(CO)₃ (**4**)

Figure S12. IR spectrum of $(\eta^6-C_6H_5CH_2NMe_2 \cdot BH_2HCr(CO)_5)Cr(CO)_3$ (4)

Complex	Cr–H Length (Å)	Angle (Cr–H–B) (°)
$[HCr(CO)_5][PPh_4]^1$	1.66(5)	
$(OC)_5Cr(\eta^1-B_2H_4\cdot 2PMe_3)^2$	1.76(8)	141(8)
$(OC)_5Cr(\eta^1-HBHPh \cdot PMe_3)^3$	1.77(2)	133(2)
$(OC)_5Cr(\eta^1-HBHMe \cdot PMe_3)^3$	1.78(3)	138.4(16)
$(OC)_4Cr(\eta^1-HBH_2\cdot dppm)^4$	1.78(3)	136(3)
$(OC)_5Cr(\eta^1-HBH_2\cdot NMe_3)^5$	1.83	158
$(OC)_5Cr(\eta^1-HBH_2\cdot PMe_3)^5$	1.94(10)	130(8)
$(OC)_3Cr(HC_6H_{10}PCy_2)(PCy_3)^6$	2.240(1)	

Table S1. List of Cr–H bond lengths (Å) and Cr–H–B bond angles (°) of σ -borane complexes of chromium(0) reported to date

References

1. M. Y. Darensbourg, R. Bau, M. W. Marks, R. R. Burch, Jr., J. C. Deaton and S. Slater, *J. Am. Chem. Soc.*, 1982, **104**, 6961.

2. M. Shimoi, K. Katoh and H. Ogino, J. Chem. Soc., Chem. Commun., 1990, 811.

3. Y. Kawano, K. Yamaguchi, S. -y. Miyake, T. Kakizawa and M. Shimoi, *Chem. Eur. J.*, 2007, **13**, 6920.

4. N. Merle, G. Koicok-Köhn, M. F. Mahon, C. G. Frost, G. D. Ruggerio, A. S. Weller and M. C. Willis, *Dalton Trans.*, 2004, 3883.

5. M. Shimoi, S. -i. Nagai, M. Ichikawa, Y. Kawano, K. Katoh, M. Uruichi and H. Ogino, *J. Am. Chem. Soc.*, 1999, **121**, 11704.

6. K. Zhang, A. A. Gonzalez, S. L. Mukerjee, S.-J. Chou, C. D. Hoff, K. A. Kubat-Martin, D. Barnhart and G. J. Kubas, *J. Am. Chem. Soc.*, 1991, **113**, 9170.