Supporting Information

for

Reduction of copper (II) complexes of tridentate ligand by nitric oxide and fluorescent detection of NO in methanol and water media

Pankaj Kumar, Apurba Kalita, Biplab Mondal*

Department of Chemistry, Indian institute of Technology Guwahati, Assam 781039, India

Synthesis of ligands, L_1 and L_2 04Figure S1. FT-IR spectrum of the L_1 in KBr pellet06
Figure S1. FT-IR spectrum of the L_1 in KBr pellet06
Figure S2. ¹ H-NMR spectrum of L_1 in CDCl ₃ 06
Figure S3. 13 C-NMR Spectrum of L_1 in CDCl ₃ 07
Figure S4. ESI-mass spectrum for L_1 in methanol07
Figure S5. FT-IR spectra of the L_2 in KBr pellet08
Figure S6. 1 H-NMR spectrum of L_{2} in CDCl ₃ 08
Figure S7. 13 C-NMR spectrum of L_2 in CDCl ₃ 09
Figure S8. ESI-mass spectrum for L ₂ in methanol 09
Figure S9. FT-IR spectrum of the complex 1 in KBr pellet10
Figure S10. UV-visible spectrum of complex 1 in acetonitrile10
Figure S11. X-Band EPR spectra of complex 1 in acetonitrile11
Figure S12. ORTEP diagram of complex 1 (50% thermal ellipsoid plot)
Eigung \$12 ET ID spectrum of the complex 2 in KDr cellet
Figure S15. F1-IR spectrum of complex 2 in RBI penet
Figure \$15. X Band EPP spectra of complex 2 in acetonitrile
Figure 515. A-band EFK spectra of complex 2 in acctoint ne
Figure S16. ORTEP diagram of complex 2 (50% thermal ellipsoid plot)13
Figure S17. UV-visible spectra of complex 1 in acetonitrile before and after purging nitric oxide 14
Figure S18. X-Band EPR spectra of 1 in acetonitrile before and after purging nitric oxide 14
Figure S19. UV spectra of complex 2 in acetonitrile before and after purging nitric oxide 15
Figure S20. X-Band EPR spectra of 2 in acetonitrile before and after purging nitric oxide 15
Figure S21. FT-IR spectrum of $L_1^{\prime\prime}$ in KBr pellet 16
Figure S22. ¹ H-NMR spectrum of $L_1^{\prime\prime}$ in CDCl ₃ 16
Figure S23. ESI-mass spectrum of $L_1^{\prime\prime}$ in methanol 17
Figure S24. FT-IR spectrum of $L_2^{\prime\prime}$ in KBr pellet 17
Figure S25. ¹ H-NMR spectrum of $L_2^{\prime\prime}$ in CDCl ₃ 18
Figure S26. ESI-Mass spectrum of $L_2^{\prime\prime}$ in methanol 18
Figure S27. FT-IR spectrum of L ₃ in KBr pellet 19
Figure S28. ¹ H-NMR spectrum of L_3 in CDCl ₃ 19
Figure S29. ¹³ C-NMR spectrum of the ligand L_3 in CDCl ₃ 20
Figure S30. ESI-mass spectrum of L_3 in methanol. 20
Figure S31. FT-IR spectrum of L_4 in KBr pellet 21
Figure S32. ¹ H-NMR spectrum of L_4 in CDCl ₃ 21
Figure S33. ¹³ C-NMR spectrum of L_4 in CDCl ₃ 22
Figure S34. ESI-mass spectrum of L ₄ in methanol 22
Figure S35. FT-IR spectrum of L ₃ in KBr pellet 23
Figure S36. UV –visible spectrum of complex 3 in methanol23
Figure S37. X-Band EPR spectrum of complex 3 in methanol24
Figure S38. FT-IR spectrum of complex 4 in KBr pellet24
Figure S39. UV –visible spectrum of complex 4 in methanol25

Figure S40. X-Band EPR spectrum of complex 3 in methanol at 298K	25
Figure S41. X-Band EPR spectra of complex 3 in methanol before (a) and after (b) purging nitric oxide	26
Figure S42. UV-visible spectra of complex 3 in methanol before (solid line) and after (dashed line)	26
purging nitric oxide	
Figure S43. X-Band EPR spectra of complex 4 in methanol before (solid line) and after (dashed line)	27
purging nitric Oxide	
Figure S44. UV-visible spectra of complex 4 in methanol before (solid line) and after (dashed line)	27
purging nitric oxide	
Figure S45. Fluorescence responses (λ_{ex} , 342 nm) for 25 μ M solution of free ligand, L ₃ (doted line) and	28
after addition of one equivalent of $[Cu(H_2O)_2]Cl_2(75\mu M)$ in methanol (solid line).	
Figure S46. Fluorescence responses (λ_{ex} , 342 nm) of deoxygenated methanol solution(25µM) of complex	28
3 before (solid line) and after (dashed lines) purging of 5 equivalent of NO at 2, 5, 10, 15, 20 and 30	
minutes at 298 K (lines I – VI, respectively)	
Figure S47. Fluorescence emission spectra of the complex $3(25 \mu\text{M})$ in water medium upon addition of	29
excess NO	
Figure S48. Fluorescence responses (λ_{ex} , 350 nm) for 25 μ M solution of free ligand, L ₄ (doted line) and	29
after addition of one equivalent of $[Cu(H_2O)_2]Cl_2(75\mu M)$ in methanol (solid line)	
Figure S49. Fluorescence responses (λ_{ex} , 350 nm) of deoxygenated methanol solution of complex 4	30
before (solid line) and after (dashed lines) purging of 5 equivalent of NO at 10, 20, 30, 40, 50 and 60	
minutes at 298 K (lines I – VI, respectively)	
Figure S50. Fluorescence emission spectra of the Complex 4 (25 µM) in water medium upon addition of	30
excess NO	
Figure S51. UV-visible spectra of complex 3 in methanol before (dashed line) and after (solid line)	31
purging nitric oxide and upon expose to oxygen (doted line)	
Figure S52. UV-visible spectra of complex 4 in methanol before (dashed line) and after (solid	31
line)purging nitric oxide and upon expose to oxygen (doted line)	

Synthesis of L₁ and L₂

The ligands L_1 and L_2 were reported earlier¹⁻⁶ and have been prepared through a modified general procedure. The details are given for L_1 .

Pyridine-2-ethylamine (1.22 g, 10 mmol) and 1-methyl-2-imidazolecarboxaldehyde (1.10 g, 10 mmol) were taken into a 50 ml round bottom flask equipped with a stirring bar. Methanol (20 ml) was added to this and heated to reflux for 4 hours (scheme 1). The resulting yellow solution was dried under reduced pressure and the dark yellow oil thus obtained was subjected to chromatographic purification using silica gel column to yield the pure Schiff base, L_1^{\prime} as yellow oil (yield, 65%, 1.39 g). The Schiff base was then dissolved in methanol (10 ml) and subjected to reduction with 2.5 equivalents of NaBH₄. After complete addition of NaBH₄ the solvent was removed under reduced pressure using a rotavapor. The crude mass was then re-dissolved in 20 ml water and the organic part was extracted with dichloromethane (25 ml × 4 portions). Removal of the solvent resulted in a crude oil. The pure L_1 was obtained after chromatographic purification of the crude oil using silica gel column (yield, 60%, 0.834 g).

Synthesis of L₄

The synthesis of L_3 has been reported earlier. L_4 has been prepared following the same procedure and the details is given in the supporting information.

The procedure of synthesis of the fluorescent ligand L_4 is given bellow (scheme 2). L_2 (0.426 g, 0.2 mmol) was dissolved into distilled chloroform (15 ml) in a 50 ml round bottom flask equipped with a stirring bar. To this, triethyl amine (0.303 g, 0.3 mmol) and dansyl chloride

(0.540 g, 0.2 mmol) was added with constant stirring. The reaction mixture was then stirred at room temperature for 5 h. The volume of the resulting solution was then reduced in rotavapor and the greenish yellow fluorescent mass was subjected to column chromatographic purification using silica gel column to result in the pure greenish yellow fluorescent ligand L_4 (yield: ~70%, 0.625 g)

References

- 1. F. B. Tamboura, M. Gaye, A. S. Sall, A. H. Barry and T. Jouini, *Inorg. Chem. Commun.* 2002, **5**, 235.
- A. Greatti, M. Scarpellini, R. A. Peralta, A. Casellato, A. J. Bortoluzzi, F. R. Xavier, R. Jovito, B. M. de Aires, B. Szpoganicz, Z. Tomkowicz, M. Rams, W. Haase and A. Neves, *Inorg. Chem.* 2008, 47, 1107.
- D. Rojas, A. M. Garcı´a, A. Vega, Y. Moreno, D. Venegas-Yazigi, M. T. Garland and J. Manzur, *Inorg. Chem.* 2004, 43, 6324.
- J. Manzur, H. Mora, A. Vega, D. Venegas-Yazigi, M. A. Novak, J. R. Sabino, V. Paredes-Garcia and E. Spodine, *Inorg. Chem.* 2009, 48, 88455.
- 5. H. Arora, F. Lloret and R. Mukherjee, *Inorg. Chem.*, 2009, 48, 1158.
- W. Canon-Mancisidor, E. Spodine, D. Venegas-Yazigi, D. Rojas, J. Manzur and S. Alvarez, *Inorg. Chem.* 2008, 47, 3687.

Figure S1. FT-IR spectrum of the L_1 in KBr pellet

Figure S2. ¹H-NMR spectrum of L₁ in CDCl₃

Figure S3. ¹³C-NMR spectrum of L₁ in CDCl₃

Figure S4. ESI-mass spectrum for L_1 in methanol

Figure S5. FT-IR spectrum of the L_2 in KBr pellet

Figure S6. ¹H-NMR spectrum of L₂ in CDCl₃

Figure S7. ¹³C-NMR spectrum of L₂ in CDCl₃

Figure S8. ESI-mass spectrum for L_2 in methanol

Figure S9. FT-IR spectrum of complex 1 in KBr pellet

Figure S10. UV-visible spectrum of complex 1 in acetonitrile

Figure S11. X-Band EPR spectrum of complex 1 in acetonitrile at 298K

Figure S12. ORTEP diagram of complex 1 (50% thermal ellipsoid plot)

Figure S13. FT-IR spectrum of the complex 2 in KBr pallet

Figure S14. UV –visible spectrum of complex 2 in acetonitrile

Figure S15. X-Band EPR spectrum of complex 2 in acetonitrile at 298K

Figure S16. ORTEP diagram of complex 2 (50% thermal ellipsoid plot)

Figure S17. UV-visible spectrum of complex 1 in acetonitrile

Figure S18. X-Band EPR spectra of complex **1** in acetonitrile before (**solid line**) and after (**dashed line**) purging nitric oxide

Figure S19. UV-visible spectra of complex 2 in acetonitrile

Figure S20. X-Band EPR spectra of complex 2 in acetonitrile before (solid line) and after (dashed line) purging nitric oxide

Figure S23. ESI-mass spectrum of $L_1^{\prime\prime}$ in methanol

Figure S24. FT-IR spectrum of $L_2^{"}$ in KBr pellet

Figure S25. ¹H NMR spectrum of $L_2^{\prime\prime}$ in CDCl₃

Figure S26. ESI-mass spectrum of $L_2^{\prime\prime}$ in methanol

Figure S27. FT-IR spectrum of L₃ in KBr pellet

Figure S28. ¹H-NMR spectrum of L₃ in CDCl₃

Figure S29. ¹³C-NMR spectrum of L₃ in CDCl₃

Figure S30. ESI-mass spectrum of L_3 in methanol

Figure S31. FT-IR spectrum of L₄ in KBr pellet

Figure S32. ¹H-NMR spectrum of L₄ in CDCl₃

Figure S33. ¹³C-NMR spectrum of L₄ in CDCl₃

Figure S34. ESI-mass spectrum of L_4 in methanol

Figure S35. FT-IR spectrum of L₃ in KBr pellet

Figure S36. UV –visible spectrum of complex 3 in methanol

Figure S37. X-Band EPR spectrum of complex 3 in methanol at 298K

Figure S38. FT-IR spectrum of complex 4 in KBr pellet

Figure S39. UV –visible spectrum of complex 4 in methanol

Figure S40. X-Band EPR spectrum of complex 3 in methanol at 298K

Figure S41. X-Band EPR spectra of complex 3 in methanol before (a) and after (b) purging nitric oxide

Figure S42. UV-visible spectra of complex 3 in methanol before (solid line) and after (dashed line) purging nitric oxide

Figure S43. X-Band EPR spectra of complex 4 in methanol before (solid line) and after (dashed line) purging nitric Oxide

Figure S44. UV-visible spectra of complex 4 in methanol before (solid line) and after (dashed line) purging nitric oxide

Figure S45. Fluorescence responses (λ_{ex} , 342 nm) for 25 μ M solution of free ligand, L₃ (doted line) and after addition of one equivalent of [Cu(H₂O)₂]Cl₂(75 μ M) in methanol (solid line).

Figure S46. Fluorescence responses (λ_{ex} , 342 nm) of deoxygenated methanol solution(25µM) of complex **3** before (**solid line**) and after (**dashed lines**) purging of 5 equivalent of NO at 2, 5, 10, 15, 20 and 30 minutes at 298 K (lines I – VI, respectively)

Figure S47. Fluorescence emission spectra of the complex 3 (25 μ M) in water medium upon addition of excess NO

Figure S48. Fluorescence responses (λ_{ex} , 350 nm) for 25 μ M solution of free ligand, L₄ (**doted line**) and after addition of one equivalent of [Cu(H₂O)₂]Cl₂(75 μ M) in methanol (**solid line**)

Figure S49. Fluorescence responses (λ_{ex} , 350 nm) of deoxygenated methanol solution of complex **4** before (**solid line**) and after (**dashed lines**) purging of 5 equivalent of NO at 10, 20, 30, 40, 50 and 60 minutes at 298 K (lines I – VI, respectively)

Figure S50. Fluorescence emission spectra of the Complex 4 (25 μ M) in water medium upon addition of excess NO

Figure S51. UV-visible spectra of complex 3 in methanol before (dashed line) and after (solid line) nitric oxide and upon expose to oxygen (doted line)

Figure S52. UV-visible spectra of complex 4 in methanol before (dashed line) and after (solid line) nitric oxide and upon expose to oxygen (doted line)