Controlled Synthesis and Size-Dependent Thermal Conductivity of Fe₃O₄ Magnetic Nanofluids

Baodui Wang^{\dagger, \parallel}, Baogang Wang^{\dagger, \uparrow}, Pengfei Wei^{\dagger}, Xiaobo Wang^{$\dagger, *$} and Wenjing Lou^{$\dagger, *$}

[†] State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China, f, ^{II}Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University Gansu, Lanzhou, 730000 (P.R. China)

Figure S1. TEM images of Fe₃O₄ NPs: (a) ~16 nm (0.36 g, Fe(acac)₃), (b) ~ 38 nm (5.40g, Fe(acac)₃), and (c) ~ 30 nm (7.20 g, Fe(acac)₃).

Figure S2. TEM images of Fe₃O₄ NPs: (a) \sim 4 nm, (b) \sim 6 nm, and (c) \sim 10 nm.

Figure S 3. XRD patterns of Fe₃O₄ NPs: (a) ~16 nm(0.36 g, Fe(acac)₃), (b) ~ 38 nm (5.40g, Fe(acac)₃) and (c) ~ 30 nm (7.20 g, Fe(acac)₃).

Figure S4. Magnetic hysteresis loops of (a) ~16 nm, (b) ~38 nm, and (c) ~30 nm Fe₃O₄ NPs measured at 298 K.

Figure S6. FT-IR spectra of the as-synthesized Fe₃O₄ nanoparticles.

Figure S7. Stability of nanofluids containing Fe_3O_4 NPs: (a) stay 1 month, (b) stay 2 months and (b) stay 5 months.