Electronic Supplementary Information

for

Facile η⁵-η³ hapticity interconversion in pentamethylcyclopentadienyl ruthenium(II) complexes containing a phenylmethallyl ("open idenyl") ligand

Andreas Glöckner, Òscar Àrias, Thomas Bannenberg, Constantin G. Daniliuc, Peter G. Jones and

Matthias Tamm^{*[a]}

^aInstitut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, D-38106 Braunschweig, Germany.

Contents

- 1. NMR study: Isomerization of anti-2 to syn-2
- 2. Computational Details

1. NMR study: Isomerization of anti-2 to syn-2

A sample of freshly prepared *anti*-[$(\eta^5-C_5Me_5)Ru(\eta^3-oInd^{Me})(PMe_3)$] (*anti*-2) in C₆D₆ was sealed in an NMR tube, and the ¹H and ³¹P{¹H} NMR spectra were measured (experiment No. 1). The NMR tube was placed in an oil bath with a constant temperature of 50° C; this time was set as the starting point of the kinetic study. For the following NMR measurements (No. 2 – No. 18), the time was stopped, and the NMR tube was cooled with an ice bath immediately after it was taken out of the oil bath.

The ratio of the *anti*- and *syn*-isomer was determined by the integration of the corresponding peaks in the 31 P NMR, and, as a reference, by the integration of the peaks assigned to the methyl-groups of the C₅Me₅ ligand in the 1 H NMR. Both ratios for each time are listed below.

	Time			³¹ P NMR		¹ H NMR	
No.	days	hours	seconds	anti	syn	anti	syn
1	0.00	0.00	0	98.1%	1.9%	98.2%	1.8%
2	0.68	16.33	58800	67.4%	32.6%	68.0%	32.0%
3	0.95	22.87	82320	58.1%	41.9%	58.8%	41.2%
4	1.60	38.37	138120	41.0%	59.0%	42.1%	57.9%
5	1.94	46.62	167820	34.1%	65.9%	35.0%	65.0%
6	2.58	62.03	223320	23.7%	76.3%	24.4%	77.7%
7	2.85	68.32	245940	21.2%	78.8%	22.0%	78.0%
8	3.80	91.08	327900	13.4%	86.6%	13.9%	86.1%
9	4.75	113.95	410220	8.6%	91.4%	8.6%	91.4%
10	5.61	134.60	484560	6.0%	94.0%	6.3%	93.7%
11	6.52	156.38	562980	4.3%	95.7%	4.5%	95.5%
12	7.74	185.80	668880	3.3%	96.7%	3.5%	96.5%
13	8.73	209.57	754440	2.8%	97.2%	3.1%	96.9%
14	9.71	232.95	838620	2.5%	97.5%	2.7%	97.3%
15	11.48	275.57	992040	1.9%	98.1%	2.0%	98.0%
16	14.39	345.33	1243200	1.6%	98.4%	1.7%	98.3%
17	17.52	420.35	1513260	2.0%	98.0%	2.1%	97.9%
18	21.30	511.13	1840080	2.0%	98.0%	2.0%	98.0%

Plot of the ³¹P{¹H} spectra

For all, except spectra 6 (Bruker DPX 200), a Bruker AV 300 spectrometer was used.

Origin Plot for the determination of the rate constant

For the calculations, the results from the first eleven ${}^{31}P{}^{1}H$ spectra were used.

In case of a first-order reaction proceeding to equilibrium, a plot of $\ln(A_{syn-2,\infty}-A_{syn-2,t})$ against the time gives the rate constant *k* from the slope.¹A represents the relative integrals of the ³¹P{¹H} NMR signals, with $A_{syn-2,\infty}$ and $A_{syn-2,t}$ being the relative integrals at equilibrium and at the time of the measurement, respectively.

Calculation of the half-life:

$$t_{1/2} = \frac{ln2}{k} \Rightarrow t_{1/2} = 105353s \approx 29,3h$$

Calculation of the free activation energy:

$$k = \frac{k_B T}{h} e^{-\Delta G^{\dagger}/RT} \Leftrightarrow \Delta G^{\dagger} = -ln \left(\frac{kh}{k_B T}\right) RT \Rightarrow \Delta G^{\dagger} = -ln (9.69 \cdot 10^{-19}) RT = 112 kJ/mol$$

$$k = 6.57 \cdot 10^{-6} \text{ s}^{-1} \qquad h = 6.62 \cdot 10^{-34} \text{ J s}$$

$$k_B = 1.38 \cdot 10^{-23} \text{ J K}^{-1} \qquad T = 325.15 \text{ K}$$

$$R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$$

¹ J. R. Chipperfield, J. Organomet. Chem., 1989, 363, 253.

4. Computational Details

	Compound		E(0 K) ^a [Ha]	H(298 K) ^b [Ha]	G(298 K) ^b [Ha]
syn	$[(\eta^5\text{-}C_5\text{Me}_5)\text{Ru}(\eta^3\text{-}o\text{Ind}^{\text{Me}})(\text{PMe}_3)]$	(2)	-1332.821236	-1332.790840	-1332.876667
anti	$[(\eta^5\text{-}C_5\text{Me}_5)\text{Ru}(\eta^3\text{-}o\text{Ind}^{\text{Me}})(\text{PMe}_3)]$	(2)	-1332.819061	-1332.788613	-1332.874206
syn	$[(\eta^5\text{-}C_5\text{Me}_5)\text{Ru}(\eta^3\text{-}o\text{Ind}^{\text{Me}})(\text{CO})]$	(3)	-985.210587	-985.184905	-985.262905
anti	$[(\eta^{5}\text{-}C_{5}Me_{5})Ru(\eta^{3}\text{-}oInd^{Me})(CO)]$	(3)	-985.208179	-985.182693	-985.260128

Energies for the optimized structures:

^{*a*}DFT energy incl. ZPE.

^{*b*} standard conditions T = 298.15 K and p = 1 atm.

	anti-2		
Ru	0.622000 -0.141800	-0.183600	
P	-0.710200 1.756200	-0.550600	
С	0.184300 3.094700	-1.449100	
с	-2.248500 1.817300	-1.562500	
C C	-0.202200 -0.001400	-2 050900	
č	-0.292200 -0.901400	-2.050900	
c	-1.086600 -1.473000	0.216600	
с	-2.490100 -1.027000	0.297800	
С	-3.414000 -1.286300	-0.717900	
С	-4.742200 -0.901000	-0.595000	
c	-5.184300 -0.259000	0.552900	
c	-2.960000 -0.405700	1 460400	
c	0.262800 -3.184800	-1.111700	
с	2.165600 -1.183000	1.048300	
С	2.736200 -0.870900	-0.230000	
С	2.771200 0.551000	-0.369000	ii ii
с	2.227900 1.107900	0.830900	
C C	1.834100 0.047100	1.698700	
c	3.385800 -1.810000	-1.187600	
c	3.422200 1.280300	-1.494100	
С	2.326800 2.535200	1.254700	
с	1.333800 0.186200	3.094700	
н	0.528000 2.695200	-2.408800	
н	1.053900 3.437800	-0.887600	
	-0.476500 3.949800	-1.032400	
н	-2.036400 1.551400	-2.601700	
н	-2.631800 2.843200	-1.542100	
н	-1.686800 3.664200	0.658600	
н	-0.578700 2.735100	1.703200	(+
н	-2.186000 2.092900	-2 995400	
	-1 147900 -0 308400	-2.865400	
н	-0.840300 -2.118200	1.069300	
н	-3.077400 -1.802700	-1.613700	
н	-5.439500 -1.111300	-1.401500	
н	-6.222800 0.042700	0.648800	
н	-2 249700 -0 212200	2.498900	
н	-0.463600 -3.887500	-1.542200	
н	0.564700 -3.594400	-0.144000	
н	1.126900 -3.164900	-1.782800	
н	2.779400 -2.542700	2.575200	
н	2.382100 -3.328900	1.047400	
	2 075000 -1 617900	-2.220600	
н	3.160400 -2.854600	-0.961300	
н	4.477100 -1.694300	-1.152100	
н	4.517000 1.283400	-1.393900	
н	3.095300 2.323000	-1.550700	
н	3.181300 0.816100	-2.456300	
H H	2.577700 3.201000	0.425500	
н	3.131900 2.632000	1.994500	
н	2.156000 0.165600	3.825200	
н	0.644200 -0.624100	3.353300	
н	0.795400 1.129100	3.234300	

	s	yn-3		
Bu	-0.770700	0.020600	0.527400	
0	-1.263800	-1.909600	2.791200	
č	-1.052000	-1.157600	1.942600	Æ
c	-0.734800	1.597000	2.084600	
c	0.494400	1.577700	1.369100	
с	1.253500	0.375100	1.448000	
с	0.842200	2.749700	0.498300	
с	2.483900	0.046400	0.696500	
с	2.731100	-1.298500	0.396600	
с	3.446800	0.982000	0.312400	
с	3.869400	-1.688800	-0.286800	
с	4.586100	0.593900	-0.382000	
С	4.800600	-0.739400	-0.692800	
с	-0.469600	0.217400	-1.742900	i i t
с	-1.583100	1.025500	-1.366500	
с	-2.578500	0.178500	-0.783800	
С	-2.071400	-1.159600	-0.813500	
с	-0.765300	-1.139000	-1.404700	
с	0.762000	0.645700	-2.465700	
с	-1.789200	2.473400	-1.649700	
с	-3.938800	0.611700	-0.361900	
с	-2.823600	-2.383800	-0.415100	
с	0.075500	-2.316500	-1.754700	
н	-0.802200	1.143200	3.069700	
H	-1.381300	2.463200	1.948900	
H	-0.053000	3.328700	0.256500	
н	1.345600	2.473400	-0.431100	
н	1.515300	3.420500	1.048500	
н	1.990100	-2.037000	0.696300	-
н	3.320800	2.026700	0.576200	
н	4.030300	-2.739900	-0.509500	
н	5.31/200	1.343400	-0.671000	
	5.690900	-1.040800	-1.238000	
	1 670700	-0.163100	-1 993400	
	1.070700	1 734000	-1.333400	
	0.855200	1.734200	-2.511800	
	-0.955500	2 099200	-1 892900	
	-2 246400	2 989500	-0.798000	
	=2 467200	2 601800	=2 503200	
	=4 628100	0 653100	=1 216400	
	-3.912700	1.608300	0.089800	
н	-4.366900	-0.070100	0.377800	
н	-3.524700	-2.181000	0.399800	
н	-2.152400	-3.179800	-0.079000	
н	-3.401000	-2.772800	-1.262700	
н	-0.131000	-2.658800	-2.777900	
н	-0.109100	-3.159500	-1.081600	1
н	1.142200	-2.075800	-1.697500	1

	anti-3		
P11	0 469000 0 0272	00 =0.266200	
0	-1.480700 -1.8312	00 -1.626800	
c	-0.769700 -1.0924	00 -1.104400	\frown
с	-0.340600 1.5740	00 -1.637400	4
с	-0.499500 1.9612	00 -0.280300	
с	-1.238000 1.1380	00 0.626800	
с	-2.581800 0.5635	00 0.409500	
С	-3.443400 1.0142	00 -0.590300	
с	-4.693600 0.4361	00 -0.765200	
с	-5.118000 -0.5875	00 0.067100	
с	-4.281400 -1.0246	00 1.087900	
С	-3.032500 -0.4553	00 1.255000	
с	0.250600 3.1510	00 0.242300	
с	2.106300 0.2441	00 1.312600	
с	2.682200 0.5333	00 0.040300	
C	2.555500 -0.6283	00 -0.783900	
c	1.904700 -1.6387	00 -0.004000	
C C	2 104500 1 1169	00 1.291800	Ru
c c	2.104500 1.1100	00 2.320200	
C C	3 124800 -0 7802	00 -2 152100	
c	1 673200 =3 0491	00 =0 428600	
c	1.040200 -1.8312	00 2.454400	
н	-1.155500 1.1494	00 -2.213300	
н	0.368100 2.1480	00 -2.233800	
н	-1.053500 1.3710	00 1.680600	
н	-3.133400 1.8333	00 -1.233500	
H	-5.345300 0.7986	00 -1.555100	
н	-6.095800 -1.0382	00 -0.071500	
H	-4.605300 -1.8207	00 1.752300	(FF)
н	-2.366500 -0.8159	00 2.037400	$\bigcirc \square$
н	1.166200 3.3441	00 -0.325500	
н	0.497500 3.0525	00 1.303800	
н	-0.385300 4.0400	00 0.143200	
н	1.128800 1.1194	00 3.018800	
н	2.360400 2.1518	2.280100	
n v	2.838600 0.7589	00 0.253100	
	2 009400 2 1160	00 -1 255000	
н	4 488100 1 5822	00 =0.411800	
н	4.189900 -1.0472	00 -2.114900	
н	3.037300 0.1497	00 -2.723300	
н	2.608000 -1.5592	00 -2.719300	
н	1.516500 -3.1291	00 -1.508200	
н	0.797000 -3.4836	00 0.061200	
н	2.539000 -3.6721	00 -0.172700	H
н	1.827100 -2.2606	00 3.089600	
н	0.391600 -2.6507	00 2.131500	
н	0.437800 -1.1667	00 3.082100	