Electronic Supplementary Information (ESI) for

Ru cyclooctatetraene precursors for MOCVD

Tatsuya Ando, Naoki Nakata, Kazuharu Suzuki, Takahiro Matsumoto and Seiji Ogo*

*To whom correspondence should be addressed. E-mail: ogotcm@mail.cstm.kyushu-u.ac.jp

A Table of Contents

Table S1, A table of contents	
Fig. S1, IR spectrum of 2.	page S2
Fig. S2, IR spectrum of 3.	page S3
Fig. S3, ¹ H NMR spectrum of 2 .	page S4
Fig. S4, ¹ H NMR spectrum of 3 .	page S5
Fig. S5, TG-DTA analysis of 1.	page S6
Fig. S6, TG-DTA analysis of 2.	page S7
Fig. S7, TG-DTA analysis of 3.	page S8
Fig. S8, A SEM image of a Ru film deposited from 1.	page S9
Fig. S9, A SEM image of a Ru film deposited from 3.	page S10
Fig. S10, An AFM image of a Ru film deposited from 1.	page S11
Fig. S11, An AFM image of a Ru film deposited from 3.	page S12
Fig. S12, An XRD pattern of a Ru film deposited from 2.	page S13
Fig. S13, An XPS spectrum of a Ru film deposited from 1.	page S14
Fig. S14, An XPS spectrum of a Ru film deposited from 3.	page S15
Fig. S15, A SEM image of hole with aspect ratio 40:1 deposited from 1.	page S16
Fig. S16, A SEM image of hole with aspect ratio 40:1 deposited from 3.	page S17

	[Ru ⁰ (η ⁴ -COT-H)-	[Ru ⁰ (η ⁴ -COT-Me)-	[Ru ⁰ (η ⁴ -COT-Et)-
	$(CO)_{3}](1)$	$(CO)_3](2)$	(CO) ₃] (3)
FTIR	previously	Fig. S1	Fig. S2
	reported		
¹ H NMR	previously	Fig. S3	Fig. S4
	reported		
X-ray	previously reported	Fig. 4	_
TG-DTA	Fig. S5	Fig. S6	Fig. S7
melting point	Table 1	Table 1	Table 1
decomposition	Table 1	Table 1	Table 1
temperature			
vapour pressure	Table 1	Table 1	Table 1
SEM	Fig. S8	Fig. 6	Fig. S9
AFM	Fig. S10	Fig. 7	Fig. S11
XRD	_	Fig. S12	_
XPS	Fig. S13	Fig. 8	Fig. S14
SEM	Fig. S15	Fig. 9	Fig. S16

Table S1. A table of contents

Fig. S1 IR spectrum of 2 as a KBr disk.

Fig. S2 IR spectrum of 3 as a KBr disk.

Fig. S3 ¹H NMR spectrum of 2 in CDCl₃.

Fig. S4 ¹H NMR spectrum of 3 in CDCl₃. †: Impurity, 1.

Fig. S5 TG-DTA analysis of 1 (flow gas: N_2 , flow rate: 100 mL min⁻¹, heating rate: 5 °C min⁻¹).

Fig. S6 TG-DTA analysis of 2 (flow gas: N_2 , flow rate: 100 mL min⁻¹, heating rate: 5 °C min⁻¹).

Fig. S7 TG-DTA analysis of 3 (flow gas: N_2 , flow rate: 100 mL min⁻¹, heating rate: 5 °C min⁻¹).

Fig. S8 A SEM image of a Ru film deposited from 1 at 165 °C under a flow of N_2 (10 sccm) and H_2 (1 sccm).

Fig. S9 A SEM image of a Ru film deposited from 3 at 165 °C under a flow of N_2 (10 sccm) and H_2 (1 sccm).

Fig. S10 An AFM image of a 17 nm thick Ru film deposited from 1 at 165 °C under a flow of N_2 (10 sccm) and H_2 (1 sccm). (a) Two- and (b) three-dimensional views.

Fig. S11 An AFM image of a 49 nm thick Ru film deposited from 3 at 175 °C under a flow of N_2 (10 sccm) and H_2 (1 sccm). (a) Two- and (b) three-dimensional views.

Fig. S12 (a) An XRD pattern of Ru film deposited from **2** at 165 °C on SiO₂ substrates under a flow of N₂ (10 sccm) and H₂ (1 sccm). (b) Magnification of Ru(100), Ru(002) and Ru(101) peaks in (a).

Fig. S13 (a) An XPS spectrum of a Ru film deposited from **1** at 165 °C under a flow of N₂ (10 sccm) and H₂ (1 sccm). Peaks for O 1s and Si 2p originate from a SiO₂ substrate. (b) Magnification of Ru $3d_{3/2}$ and $3d_{5/2}$ peaks in (a).

Fig. S14 (a) An XPS spectrum of a Ru film deposited from **3** at 175 °C under a flow of N₂ (10 sccm) and H₂ (1 sccm). Peaks for O 1s and Si 2p originate from a SiO₂ substrate. (b) Magnification of Ru $3d_{3/2}$ and $3d_{5/2}$ peaks in (a).

Fig. S15 (a) A SEM image of holes with aspect ratios 40:1. A Ru film was deposited at 155 °C under a flow of N_2 (10 sccm) and H_2 (1 sccm) from complex 1. Magnified images of (b) top, (c) middle and (d) bottom of the hole.

Fig. S16 (a) A SEM image of holes with aspect ratios 40:1. A Ru film was deposited at 165 °C under a flow of N_2 (10 sccm) and H_2 (1 sccm) from complex **3**. Magnified images of (b) top, (c) middle and (d) bottom of the hole.