Isolations and characterization of highly water-soluble dimeric lanthanide citrate and malate with ethylenediaminetetraacetate

Mao-Long Chen, Song Gao, Zhao-Hui Zhou*

Department of Chemistry, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, 361005, China, Fax: +86 592 2183047; Tel: +86 592 2184531; E-mail: zhzhou@xmu.edu.cn

Fig. S1 Anion structure of dimeric complex $(NH_4)_8[Ce_2(Hcit)_2(edta)_2]\cdot 9H_2O(2)$	1
Fig. S2 Anion structure of dimeric complex $K_8[La_2(Hcit)_2(edta)_2] \cdot 16H_2O(3)$	1
Fig. S3 Anion structure of dimeric complex $K_6[Ce_2(Hmal)_2(edta)_2] \cdot 14H_2O(5)$	1
Fig. S4 ¹ H NMR spectrum of $(NH_4)_8[La_2(Hcit)_2(edta)_2] \cdot 9H_2O(1)$	2
Fig. S5 ¹ H NMR spectrum of $(NH_4)_8[Ce_2(Hcit)_2(edta)_2] \cdot 9H_2O(2)$	2
Fig. S6 ¹ H NMR spectrum of $K_8[La_2(Hcit)_2(edta)_2] \cdot 16H_2O(3)$	3
Fig. S7 ¹ H NMR spectrum of $K_6[La_2(Hmal)_2(edta)_2] \cdot 14H_2O(4)$	3
Fig. S8 ¹ H NMR spectrum of $K_6[Ce_2(Hmal)_2(edta)_2] \cdot 14H_2O(5)$	4
Fig. S9 ¹ H NMR spectrum of $K[La(edta)(H_2O)_3] \cdot 5H_2O$	4
Fig. S10 ¹ H NMR spectrum of $K[Ce(edta)(H_2O)_3] \cdot 5H_2O$	5
Fig. S11 ¹ H NMR spectrum of K_4 edta	5
Fig. S12 ¹ H NMR spectrum of K ₃ Hcit	6
Fig. S13 ¹ H NMR spectrum of K ₂ Hmal	6
Fig. S14 ¹³ C NMR spectrum of $(NH_4)_8[La_2(Hcit)_2(edta)_2] \cdot 9H_2O(1)$	7
Fig. S15 ${}^{13}C$ NMR spectrum of $(NH_4)_8[Ce_2(Hcit)_2(edta)_2] \cdot 9H_2O(2)$	7
Fig. S16 ¹³ C NMR spectrum of $K_8[La_2(Hcit)_2(edta)_2] \cdot 16H_2O(3)$	8
Fig. S17 ¹³ C NMR spectrum of $K_6[La_2(Hmal)_2(edta)_2] \cdot 14H_2O(4)$	8
Fig. S18 ¹³ C NMR spectrum of $K_6[Ce_2(Hmal)_2(edta)_2] \cdot 14H_2O(5)$	9
Fig. S19 ¹³ C NMR spectrum of $K[La(edta)(H_2O)_3]$ ·5H ₂ O	9
Fig. S20 ¹³ C NMR spectrum of $K[Ce(edta)(H_2O)_3] \cdot 5H_2O$	10
Fig. S21 ¹³ C NMR spectrum of K_4 edta	10
Fig. S22 ¹³ C NMR spectrum of K_3 Hcit	11
Fig. S23 ^{13}C NMR spectrum of K_2 Hmal	11
Fig. S24 IR spectrum of $(NH_4)_8[La_2(Hcit)_2(edta)_2] \cdot 9H_2O(1)$	12
Fig. S25 IR spectrum of $(NH_4)_8[Ce_2(Hcit)_2(edta)_2] \cdot 9H_2O(2)$	12
Fig. S26 IR spectrum of $K_8[La_2(Hcit)_2(edta)_2] \cdot 16H_2O(3)$	13
Fig. S27 IR spectrum of $K_6[La_2(Hmal)_2(edta)_2] \cdot 14H_2O(4)$	13
Fig. S28 IR spectrum of $K_6[La_2(Hmal)_2(edta)_2] \cdot 14H_2O(5)$	14
Fig. S29 TG-DTG curve of $(NH_4)_8[La_2(Hcit)_2(edta)_2] \cdot 9H_2O(1)$	14
Fig. S30 TG-DTG curve of $(NH_4)_8[Ce_2(Hcit)_2(edta)_2] \cdot 9H_2O(2)$	15
Fig. S31 TG-DTG curve of $K_8[La_2(Hcit)_2(edta)_2] \cdot 16H_2O(3)$	15
Fig. S32 TG-DTG curve of $K_6[La_2(Hmal)_2(edta)_2] \cdot 14H_2O(4)$	16
Fig. S33 TG-DTG curve of $K_6[La_2(Hmal)_2(edta)_2] \cdot 14H_2O(5)$	16
Fig. S34 XRD of La_2O_3	17
<i>Fig. S35 XRD of CeO</i> ₂	17
Fig. S36 CH ₄ conversions of OCM reaction over La ₂ O ₃	18

Fig. S37 C ₂ selectivity of OCM reaction over La ₂ O ₃	
Fig. S38 C_2 yield of OCM reaction over La_2O_3	19
Table S1 ^{13}C NMR spectral data (in ppm) of complexes 2 and 5, K_3Hcit , K_4edta ,	K_2Hmal and
$K[Ce(edta)(H_2O)_3] \cdot 5H_2O^a$	

Fig. S1 Anion structure of dimeric complex $(NH_4)_8[Ce_2(Hcit)_2(edta)_2]\cdot 9H_2O(2)$

Fig. S2 Anion structure of dimeric complex $K_8[La_2(Hcit)_2(edta)_2] \cdot 16H_2O(3)$

Fig. S3 Anion structure of dimeric complex $K_6[Ce_2(Hmal)_2(edta)_2] \cdot 14H_2O(5)$

Fig. S7 ¹H NMR spectrum of $K_6[La_2(Hmal)_2(edta)_2]$ ·14H₂O (4)

Fig. S8 1 H NMR spectrum of K₆[Ce₂(Hmal)₂(edta)₂]·14H₂O (5)

Fig. S11 ¹H NMR spectrum of K₄edta

Fig. S14 ^{13}C NMR spectrum of (NH₄)₈[La₂(Hcit)₂(edta)₂]·9H₂O (1)

Fig. S15 ^{13}C NMR spectrum of (NH_4)_8[Ce_2(Hcit)_2(edta)_2] $\cdot 9H_2O~(2)$

Fig. S16¹³C NMR spectrum of K₈[La₂(Hcit)₂(edta)₂]·16H₂O (3)

 13 C NMR of $K_6[La_2(Hmal)_2(edta)_2] \cdot 14H_2O(4)$

Fig. S17 13 C NMR spectrum of K₆[La₂(Hmal)₂(edta)₂]·14H₂O (4)

13 C NMR of K₆[Ce₂(Hmal)₂(edta)₂]·14H₂O (**5**)

¹H NMR of K[La(edta)(H_2O_3]·5 H_2O

Fig. S23 ¹³C NMR spectrum of K₂Hmal

Fig. S24 IR spectrum of (NH₄)₈[La₂(Hcit)₂(edta)₂]·9H₂O (1)

Fig. S25 IR spectrum of $(NH_4)_8[Ce_2(Hcit)_2(edta)_2]$ ·9H₂O (2)

Fig. S26 IR spectrum of K₈[La₂(Hcit)₂(edta)₂]·16H₂O (3)

Fig. S27 IR spectrum of $K_6[La_2(Hmal)_2(edta)_2]$ ·14H₂O (4)

Fig. S28 IR spectrum of $K_6[La_2(Hmal)_2(edta)_2] \cdot 14H_2O(5)$

Fig. S29 TG-DTG curve of $(NH_4)_8[La_2(Hcit)_2(edta)_2]$ ·9H₂O (1)

Fig. S30 TG-DTG curve of $(NH_4)_8$ [Ce₂(Hcit)₂(edta)₂]·9H₂O (2)

Fig. S31 TG-DTG curve of K₈[La₂(Hcit)₂(edta)₂]·16H₂O (3)

Fig. S32 TG-DTG curve of K₆[La₂(Hmal)₂(edta)₂]·14H₂O (4)

Fig. S33 TG-DTG curve of K₆[La₂(Hmal)₂(edta)₂]·14H₂O(5)

Fig. S35 XRD of CeO₂

 $\therefore m_{cat.} = 400 \text{ mg}, n_{CH4}/n_{O2} = 3, \text{ GHSV} = 7500 \text{ h}^{-1}$

Fig. S37 C₂ yield of OCM reaction over La₂O₃ $\ddagger: m_{cat.} = 400 \text{ mg}, n_{CH4}/n_{O2} = 3, \text{ GHSV} = 7500 \text{ h}^{-1}$

K[Ce(edta)(H ₂ O) ₃]·5H ₂ O ^a											
Compound	α-C	α -CO ₂	β-CH ₂ CO ₂	β-CO ₂		-CH ₂ N	-NCH ₂ CO ₂	-CO ₂			
2	79.0(1.3)	184.7(0.5)	47.7(-0.8)	181.6(-0.1)		45.2(-8.5)	62.4(1.3)	177.6(-0.9)			
5	71.5(0.5)	185.5(3.9)	43.3(0.8)	180.9(2.1)		41.3(-12.4)	60.4(0.3)	178.4(-0.1)			
[Hcit] ³⁻	77.7	184.2	48.5	181.7	[edta] ⁴⁻	53.7	60.1	178.5			
[Hmal] ²⁻	71.0	181.6	42.5	178.8	$\left[Ce(edta)(H_2O)_3\right]^{3-}$	36.6(-17.1)	58.4(-1.7)	178.7(0.2)			

 13 C NMR spectral data (in ppm) of complexes 2 and 5 K₂Hcit K₄edta K₂Hmal and Table S1

 $^a\ \bigtriangleup \delta$ values are given in brackets