Electronic Supporting Information

Sequential Growth in Solution of NiFe Prussian Blue Coordination Network Nanolayers on Si(100) Surfaces

Simon Tricard,^{a,*} Claire Costa-Coquelard,^a Florence Volatron,^a Benoît Fleury,^a Vincent Huc,^a Pierre-Antoine Albouy,^b Christophe David,^c Frédéric Miserque,^d Pascale Jegou,^e Serge Palacin^e and Talal Mallah $a, *$

Figure S1 Infrared spectra of the CN groups of the precursor $K_4[Fe(CN)_6]$, $3H_2O(2042 \text{ cm}^{-1})$ and the bulk material $Ni_2[Fe(CN)_6]$,12H₂O (2097 cm⁻¹). The absorption is reported to one atom of iron by dividing by the molar mass of each compound. The molar absorption coefficient is found 30% lower for the binding cyanides of the bulk material than for the non binding ones of the ferrocyanide.

Figure S2 Infrared spectra for the acid, ligand, and *Ni0* formation of the synthesis of the anchoring monolayer. For the three reactions, we observed the C-H symmetrical and asymmetrical stretching bands of the aliphatic chains at 2883 and 2928 cm⁻¹ and the band centred at 2100 cm⁻¹ corresponding to unreacted Si-H. At the acid step, we observed the acid C=O stretching mode at 1719 cm⁻¹ that disappeared at the next steps (ligand and NiO) to give an amid C=O stretching mode at 1655 cm-1 . We did not observe any significant differences in IR between the ligand and the *Ni0* steps.

Figure S3 X-ray reflectograms (dots) and simulation (line) a) for the acid step – simulated by a 1.2 nm thick slab; and b) fot the *Ni0* step of the formation of the anchoring monolayer – simulated by a 1.8 nm thick slab.

b)

Figure S4 AFM images of the SiH, acid and *Ni0* steps of the formation of the anchoring monolayer: a) SiH step, roughness: 0.17 nm, b) acid step, roughness: 0.28 nm, b) *Ni0* step, roughness: 0.28 nm. The blue lines represent the cross section close to the image.

 $\mathbb{Z}[\text{nm}]$

Figure S5 XPS spectra at the N1s and Ni2p edges at the step *Ni0.* The ratio N/Ni extracted with these spectra was equal to 4.

Figure S6 Infra-red spectra at 10⁻³ mol.L⁻¹: zoom of the IR signal of the first two steps showing a shift from 2060 to 2069 cm⁻¹ (left); evolution of the IR signal at the *Nin* steps showing a shift from 2069 to 2096 cm^{-1} (right).

Figure S7 X-ray reflectograms (dots) and simulation (line) at the step *Ni6* of Ni-Fe growth for a concentration of the precursors in solution of 10^{-3} mol. L⁻¹ (left – simulated by a 1.8 nm thick slab and a 6.7 nm thick slab) and 10^{-6} mol. L⁻¹ (right – simulated by a 1.8 nm thick slab and a 0.4 nm thick slab) and.

Figure S8 a) XPS spectra at the Fe2p threshold for the starting material $K_4Fe(CN)_6$ (left) and for the bulk compounds $\text{Ni}_2[\text{Fe(CN)}_6]$ (center) and $\text{K}_2\text{Ni}_3[\text{Fe(CN)}_6]_2$ (right). b) XPS spectra at the Ni2p threshold for the starting material $K_4Fe(CN)_6$ (left) and for the bulk compounds $Ni_2[Fe(CN)_6]$ (center) and $K_2Ni_3[Fe(CN)_6]_2$ (right). c) XPS spectra at the Fe2p and Ni2p edges at the step *Ni6* of NiFe growth for a concentration of the precursors in solution of: 10^{-6} mol.L⁻¹ (left); 10^{-3} mol.L⁻ $\frac{1}{1}$ (right).

a)

b)

c)

Figure S9 XPS spectra at the Fe2p and Ni2p edges at the step *Ni12* of NiFe growth for a concentration of the precursors in solution of 10^{-3} mol. L^{-1} .

Comparison between concentrations in solution and on the surface.

Case where there is one molecule every n nanometers on the surface.

Surface taken by one molecule: $n \times n = n^2 nm^2$

Surface concentration: $S = 1 / (n^2 \text{ nm}^2) = (1/n^2) .10^{18} \text{ m}^{-2} = (1/n^2) .10^{14} \text{ cm}^{-2}$ $= (1/n^2) . 10^{-10}$ mol.cm⁻² = 100/*n*² pmol.cm⁻²

Case where there is one molecule every n nanometers in solution.

Volume taken by one molecule: $n \times n \times n = n^3$ nm³ Volume concentration: $C = 1 / (n^3 \text{ nm}^3) = (1/n^3) .10^{27} \text{ m}^{-3} = (1/n^3) .10^{24} \text{ dm}^{-3}$ $= (1/n^3).10^{24} L^{-1} = 1/n^3 \text{ mol.} L^{-1}$

Correspondence table:

