Electronic Supporting Information

Sequential Growth in Solution of NiFe Prussian Blue Coordination Network Nanolayers on Si(100) Surfaces

Simon Tricard,^{a,*} Claire Costa-Coquelard,^a Florence Volatron,^a Benoît Fleury,^a Vincent Huc,^a Pierre-Antoine Albouy,^b Christophe David,^c Frédéric Miserque,^d Pascale Jegou,^e Serge Palacin^e and Talal Mallah^{a,*}

Figure S1 Infrared spectra of the CN groups of the precursor $K_4[Fe(CN)_6]$, $3H_2O(2042 \text{ cm}^{-1})$ and the bulk material Ni₂[Fe(CN)₆], $12H_2O(2097 \text{ cm}^{-1})$. The absorption is reported to one atom of iron by dividing by the molar mass of each compound. The molar absorption coefficient is found 30% lower for the binding cyanides of the bulk material than for the non binding ones of the ferrocyanide.

Figure S2 Infrared spectra for the acid, ligand, and *Ni0* formation of the synthesis of the anchoring monolayer. For the three reactions, we observed the C-H symmetrical and asymmetrical stretching bands of the aliphatic chains at 2883 and 2928 cm⁻¹ and the band centred at 2100 cm⁻¹ corresponding to unreacted Si-H. At the acid step, we observed the acid C=O stretching mode at 1719 cm⁻¹ that disappeared at the next steps (ligand and *Ni0*) to give an amid C=O stretching mode at 1655 cm⁻¹. We did not observe any significant differences in IR between the ligand and the *Ni0* steps.

Figure S3 X-ray reflectograms (dots) and simulation (line) a) for the acid step – simulated by a 1.2 nm thick slab; and b) fot the *Ni0* step of the formation of the anchoring monolayer – simulated by a 1.8 nm thick slab.

b)

Figure S4 AFM images of the SiH, acid and *Ni0* steps of the formation of the anchoring monolayer: a) SiH step, roughness: 0.17 nm, b) acid step, roughness: 0.28 nm, b) NiO step, roughness: 0.28 nm. The blue lines represent the cross section close to the image.

Figure S5 XPS spectra at the N1s and Ni2p edges at the step *Ni0*. The ratio N/Ni extracted with these spectra was equal to 4.

Figure S6 Infra-red spectra at 10^{-3} mol.L⁻¹: zoom of the IR signal of the first two steps showing a shift from 2060 to 2069 cm⁻¹ (left); evolution of the IR signal at the *Nin* steps showing a shift from 2069 to 2096 cm⁻¹ (right).

Figure S7 X-ray reflectograms (dots) and simulation (line) at the step *Ni6* of Ni-Fe growth for a concentration of the precursors in solution of 10^{-3} mol.L⁻¹ (left – simulated by a 1.8 nm thick slab and a 6.7 nm thick slab) and 10^{-6} mol.L⁻¹ (right – simulated by a 1.8 nm thick slab and a 0.4 nm thick slab) and.

Figure S8 a) XPS spectra at the Fe2p threshold for the starting material $K_4Fe(CN)_6$ (left) and for the bulk compounds Ni₂[Fe(CN)₆] (center) and K_2Ni_3 [Fe(CN)₆]₂ (right). b) XPS spectra at the Ni2p threshold for the starting material $K_4Fe(CN)_6$ (left) and for the bulk compounds Ni₂[Fe(CN)₆] (center) and K_2Ni_3 [Fe(CN)₆]₂ (right). c) XPS spectra at the Fe2p and Ni2p edges at the step *Ni6* of NiFe growth for a concentration of the precursors in solution of: 10⁻⁶ mol.L⁻¹ (left); 10⁻³ mol.L⁻¹ (right).

a)

b)

c)

Figure S9 XPS spectra at the Fe2p and Ni2p edges at the step *Ni12* of NiFe growth for a concentration of the precursors in solution of 10^{-3} mol.L⁻¹.

	Fe2p _{1/2}	Fe2p _{3/2}	Ni2p _{1/2}	Ni2p _{3/2}	Ratio
Potassium Ferrocyanide	722,1 eV	709,2 eV	-	-	-
Nickel Chloride	-	-	874,2 eV	856,7 eV	-
Bulk Ni ₂ Fe	721,3 eV	708,3 eV	874,1 eV	856,5 eV	Fe/Ni = 0,5
Bulk K ₂ Ni ₃ Fe ₂	721,6 eV	708,8 eV	874,3 eV	856,8 eV	Fe/Ni = 0,7
<i>Ni12</i> 10 ⁻³ mol.L ⁻¹	721,6 eV	708,7 eV	874,0 eV	856,5 eV	Fe/Ni = 0,9

Comparison between concentrations in solution and on the surface.

Case where there is one molecule every n nanometers on the surface.

Surface taken by one molecule: $n \ge n = n^2 nm^2$

Surface concentration: $S = 1 / (n^2 \text{ nm}^2) = (1/n^2) \cdot 10^{18} \text{ m}^{-2} = (1/n^2) \cdot 10^{14} \text{ cm}^{-2}$ = $(1/n^2) \cdot 10^{-10} \text{ mol.cm}^{-2} = 100/n^2 \text{ pmol.cm}^{-2}$

Case where there is one molecule every n nanometers in solution.

Volume taken by one molecule: $n \ge n \ge n^3 \mod^3$ Volume concentration: $C = 1 / (n^3 \mod^3) = (1/n^3) \cdot 10^{27} \mod^{-3} = (1/n^3) \cdot 10^{24} \det^{-3} = (1/n^3) \cdot 10^{24} \operatorname{L}^{-1} = 1/n^3 \operatorname{mol.L}^{-1}$

Correspondence table:

Volume concentration C in mol.L ⁻¹	10-6	10-3
Surface concentration S in pmol.cm ⁻²	10 ⁻²	1
Intermolecular distance n in nm	100	10