Paramagnetic Dithiolene Complexes as Metallo-ligands: Ether/Thioether Coordination

Alessia Famengo, Dalice Pinero, Olivier Jeannin, Thierry Guizouarn, and Marc Fourmigué

SUPPLEMENTARY MATERIAL

Syntheses

Dithiocarbonate **3b**. The trithiocarbonateⁱ **3a** (0.3130 g, 1.16 mmol) is added to a solution of mercuric acetate (0.8070 g, 2.54 mmol) in a mixture of CH₃COOH/CHCl₃ (3/1 v/v, 17.0 ml) and the solution stirred for 2.5h at rt. The white suspension is filtered on Celite and the filtrate evaporated under vacuum to afford a white solid, dissolved in CHCl₃. The chloroform solution is extracted with H₂O, dried on MgSO₄ and concentrated, affording **3b** as white crystals (0.2447 g, yield 85%), m.p. 137–138°C (Litt.ⁱⁱ 138–140°C). ¹H NMR (CDCl₃, TMS) δ : 4.05 (t, 2H); 2.98 (t, 2H) ppm. IR (KBr) v_{C=O} = 1658 cm⁻¹. Elem. Anal. Calc. for C₇H₈O₂S₄ (Found) : 33.31 (33.20), 3.19 (3.22) %.

 $(nBu_4N)(1) \cdot DMF$. To a solution of dithiocarbonate **3b** (0.1179 g, 0.48 mmol) in distilled MeOH (20 ml) is added Bu₄NOH 1M (1.05 ml, 1.05 mmol). After stirring for 1h, NiCl₂•6H₂O (55.6 mg, 0.24 mmol) is added. The suspension is stirred for 10 mn and filtered. The brown solid is washed with MeOH and dried. It is soluble in CH₃CN, CH₂Cl₂ and DMF. Recrystallization by Et₂O vapour diffusion on a DMF solution afforded the *n*Bu₄N⁺ salt as DMF solvate, (*n*Bu₄N)(1)•DMF (0.195 g, 75%). Elem. Anal. Found: C, 45.32; H, 7.18; N, 2.95. C₃₁H₅₉N₂NiO₃S₈ (MW = 823.04 g/mol) requires C, 45.24; H, 7.23, N, 3.40 %. UV-vis (CH₂Cl₂): $\lambda_{max} = 900$ nm.

 $[Ni(DMF)_6][1]_2$. A solution a $(nBu_4N)(1) \cdot DMF$ (10.0 mg, 0.012 mmol) in CH₃CN (2.0 ml) is added to a solution of Ni(ClO₄)₂•6H₂O (31.3 mg, 0.08 mmol) in CH₃CN (2.0 ml) and left unstirred for one day. The black precipitate is filtered and washed with CH₃CN. Recrystallization by Et₂O vapour diffusion on a DMF solution afforded needle-shaped crystals which analyse as [Ni(DMF)₆][1]₂. Elem. Anal. Found: C, 33.24; H, 4.86; N, 5.48. C₄₂H₇₀N₆Ni₃O₁₀S₁₆ (MW = 1508.1780 g/mol) requires C, 33.45; H, 4.68; N, 5.57 %. [*NiCl(DMF)*₂][**1**]•(2*DMF*,*Et*₂*O*). A solution of (*n*Bu₄N)(**1**)•DMF (10.0 mg, 0.012 mmol) in CH₃CN (2 ml) is mixed with a solution of NiCl₂•6H₂O (10.5 mg, 0.042 mmol) in MeOH (0.5 ml). The filtered solution was left for two days while a black precipitate appears. The black precipitate is filtered and washed with CH₃CN. Recrystallization by Et₂O vapour diffusion on a DMF solution afforded prismatic crystals (11.4 mg, 55%), identified from X-ray diffraction as a DMF/Et₂O solvate formulated as [NiCl(DMF)₂][**1**]•(2DMF,Et₂O). Elem. Anal. Found: C, 32.45; H, 5.16; N, 6.04, compatible with the loss of Et₂O molecule. [NiCl(DMF)₂][**1**]•2DMF: C₂₄H₄₄ClN₄Ni₂O₆S₈ (MW = 893.9976 g/mol) requires C, 32.24; H, 4.96; N, 6.27 %.

X-ray Diffraction Studies. Data were collected on a Nonius KappaCCD or APEXII Bruker AXS Diffractometers with graphite-monochromated Mo-K α radiation ($\lambda = 0.71073$ Å). Structures were solved by direct methods (SHELXS-97, SIR97)ⁱⁱⁱ and refined (SHELXL-97) by full-matrix least-squares methods,^{iv} as implemented in the WinGX software package.^v Absorption corrections were applied. Hydrogen atoms were introduced at calculated positions (riding model), included in structure factor calculations, and not refined.

Magnetic properties. The magnetic susceptibility measurements were obtained from a Quantum Design SQUID magnetometer MPMS-XL. This magnetometer works between 1.8 and 400 K for dc applied fields ranging from -5 to 5 T. Measurements were performed on polycrystalline samples of $[Ni(DMF)_6](1)_2$ (3.6 mg) and $[NiCl(DMF)_2](1)$ (2.2 mg). The magnetic data were corrected for the sample holder and the diamagnetic contributions.

ⁱ (a) T. K. Hansen, T. Jørgensen, P. C. Stein, J. Becher, J. Org. Chem. **1992**, 57, 6403; (b) T.

K. Hansen, T. Jørgensen, J. Becher, J. Chem. Soc. Chem. Commun., 1992, 1550

ⁱⁱ M. Wagner, R.-M. Olk, E. Hoyer, J. Prakt. Chem. 1994, 336, 177.

ⁱⁱⁱ A. Altomare, M. C. Burla, M. Camalli, G. Cascarano, C. Giacovazzo, A. Guagliardi, A. G. G. Moliterni, G. Polidori, R. Spagna, *J. Appl. Cryst.* **1999**, *32*, 115.

^{iv} SHELX97 - Programs for Crystal Structure Analysis (Release 97-2). G. M. Sheldrick, (1998).

^v L. J. Farrugia, J. Appl. Cryst. 1999, 32, 837.