## Supporting Information for

Synthesis, Crystal structure of α-Keggin heteropolymolybdates with pyridine-2,6-dicarboxylate based frameworks, and associated RhB photocatalytic degradation and 2D-IR-COS test

Compound 1







Compound 3



Fig. S1 Thermogravimetric curves and thermal infrared spectra for compound 1-3

Compound 1



 $Compound \ 2$ 



Compound 3



Fig. S2 The powder X-ray diffraction patterns of compound 1-3

#### Compound 1







Fig. S3.2 Temperature-dependent synchronous correlation IR spectra of 2 between 3000-3600cm<sup>-1</sup> over a temperature range

from 323 to 393 K

As is shown in Fig. **S3.2**, obvious inductions appear at 3200 and 3550 cm<sup>-1</sup>. The auto peaks around 3200 cm<sup>-1</sup> are assigned to temperature-induced stretching vibrations of carboxyl O-H bond, and the auto peaks around 3550 cm<sup>-1</sup>, which is much weaker, are assigned to temperature-induced stretching vibrations of pyridine N-H bond. So, the hydrogen atoms at the carboxylate O and the pyridine N are both present. Compound **2** 



Fig. S4.1 The UV-vis absorption spectra change of 2 and 3

S4



Fig. S4.2 Plots of the conversions of RhB versus reaction time of 1-3 in 4 repeatability tests.



**Fig. S5.1** Crystal structure of  $[PMo_{12}O_{40}]^{3-}$  (Symmetry codes: A: -y+1, x-y, z; B: -x+y+1, -x+1, z)



Fig. S5.3 Crystal structure of  $[PMo_{12}O_{40}]^{3-}$ , removed unnecessary split O for clarity.



Fig. S5.4 Octanucler metallamacrocycle  $Ln_8(pdc)_8$  in compound 2 (along [011] direction) and 3 (along [100] direction), Ln-O-C-O-Ln bonds are simplified as Ln-Ln bonds

### **Tab. S1.1** Selected Bond Distances (Å) and Angles (deg) of $\mathbf{1}^{a}$

| Mo(1)-O(11)               | 1.665(6) | Mo(3)-O(14)               | 1.893(6) | Mo(1) <sup>#1</sup> -O(15)-Mo(1)              | 88.5(2)              | O(12)-Mo(1)-O(15)                             | 72.96(19)  |
|---------------------------|----------|---------------------------|----------|-----------------------------------------------|----------------------|-----------------------------------------------|------------|
| Mo(1)-O(12)               | 1.907(6) | Mo(3)-O(17)               | 1.960(6) | Mo(1) <sup>#</sup> 1-O(15)-Mo(1) <sup>#</sup> | <sup>2</sup> 88.5(2) | O(13)-Mo(1)-O(15)                             | 83.0(2)    |
| Mo(1)-O(12) <sup>#1</sup> | 1.913(6) | Mo(3)-O(18) <sup>#2</sup> | 1.888(6) | Mo(1) <sup>#2</sup> -O(15)-Mo(1)              | 88.5(2)              | O(14)-Mo(1)-O(13)                             | 84.7(2)    |
| Mo(1)-O(13)               | 1.925(6) | Mo(3)-O(19) <sup>#2</sup> | 2.453(5) | Mo(1)-O(12)-Mo(1)#2                           | 125.5(3)             | O(14)-Mo(1)-O(15)                             | 83.3(2)    |
| Mo(1)-O(14)               | 1.913(6) | Mo(3)-O(21) <sup>#2</sup> | 1.926(6) | Mo(2)-O(13)-Mo(1)                             | 150.6(3)             | O(19) <sup>#1</sup> -P(1)-O(15)               | 109.4(2)   |
| Mo(1)-O(15)               | 2.434(5) | Mo(3)-O(24)               | 1.672(6) | Mo(3)-O(14)-Mo(1)                             | 153.9(3)             | O(19) <sup>#1</sup> -P(1)-O(19)               | 109.5(2)   |
| Mo(2)-O(13)               | 1.875(6) | Mo(4)-O(19)               | 2.420(5) | O(11)-Mo(1)-O(12)                             | 102.3(3)             | O(19) <sup>#1</sup> -P(1)-O(19) <sup>#2</sup> | 109.5(2)   |
| Mo(2)-O(16)               | 1.691(6) | Mo(4)-O(20)               | 1.907(6) | O(11)-Mo(1)-O(12) <sup>#1</sup>               | 101.4(3)             | O(19) <sup>#2</sup> -P(1)-O(15)               | 109.4(2)   |
| Mo(2)-O(17)               | 1.855(6) | Mo(4)-O(21)               | 1.911(6) | O(11)-Mo(1)-O(13)                             | 101.9(3)             | O(19)-P(1)-O(15)                              | 109.4(2)   |
| Mo(2)-O(18)               | 1.957(6) | Mo(4)-O(22)               | 1.915(6) | O(11)-Mo(1)-O(14)                             | 102.7(3)             | O(19)-P(1)-O(19) <sup>#2</sup>                | 109.5(2)   |
| Mo(2)-O(19)               | 2.419(5) | Mo(4)-O(22) <sup>#1</sup> | 1.910(6) | O(11)-Mo(1)-O(15)                             | 172.5(3)             | P(1)-O(15)-Mo(1)                              | 126.31(16) |
| Mo(2)-O(20)               | 1.942(6) | Mo(4)-O(23)               | 1.682(6) | O(12) <sup>#1</sup> -Mo(1)-O(13)              | 88.6(2)              | P(1)-O(15)-Mo(1) <sup>#1</sup>                | 126.31(16) |
| P(1)-O(15)                | 1.531(9) | P(1)-O(19) <sup>#1</sup>  | 1.531(5) | O(12) <sup>#1</sup> -Mo(1)-O(14)              | 155.8(2)             | P(1)-O(15)-Mo(1)#2                            | 126.31(16) |
| P(1)-O(19)                | 1.531(5) | P(1)-O(19) <sup>#2</sup>  | 1.531(5) | O(12) <sup>#1</sup> -Mo(1)-O(15)              | 72.88(19)            | P(1)-O(19)-Mo(2)                              | 125.5(3)   |
|                           |          |                           |          | O(12)-Mo(1)-O(12) <sup>#1</sup>               | 87.5(4)              | P(1)-O(19)-Mo(3) <sup>#1</sup>                | 125.8(3)   |
|                           |          |                           |          | O(12)-Mo(1)-O(13)                             | 155.8(2)             | P(1)-O(19)-Mo(4)                              | 126.0(3)   |
|                           |          |                           |          | O(12)-Mo(1)-O(14)                             | 89.2(2)              |                                               |            |
|                           |          |                           |          |                                               |                      |                                               |            |

<sup>*a*</sup> Symmetry transformations used to generate equivalent atoms for for 1: #1 -y+1, x-y, z; #2 -x+y+1, -x+1, z.

### **Tab. S1.2** Selected Bond Distances (Å) and Angles (deg) of $2^a$

| Sm(1)-O(33)                      | 2.443(10) | Sm(2)-O(29)                      | 2.480(10) | Sm(3)-O(25)       | 2.542(10) | Sm(4)-O(21)      | 2.472(10) |
|----------------------------------|-----------|----------------------------------|-----------|-------------------|-----------|------------------|-----------|
| Sm(1)-O(34)                      | 2.536(13) | Sm(2)-O(30)                      | 2.493(15) | Sm(3)-O(26)       | 2.453(8)  | Sm(4)-O(22)#3    | 2.359(8)  |
| Sm(1)-O(35)                      | 2.552(10) | Sm(2)-O(31)                      | 2.627(17) | Sm(3)-O(27)       | 2.451(10) | Sm(4)-O(23)      | 2.408(9)  |
| Sm(1)-O(36)                      | 2.441(8)  | Sm(2)-O(32)                      | 2.470(11) | Sm(3)-O(28)       | 2.454(9)  | Sm(4)-O(24)      | 2.411(10) |
| Sm(1)-O(10) <sup>#2</sup>        | 2.458(8)  | Sm(2)-O(8) <sup>#4</sup>         | 2.395(7)  | Sm(3)-O(1)#1      | 2.414(8)  | Sm(4)-O(2)       | 2.440(8)  |
| Sm(1)-O(11)                      | 2.453(8)  | Sm(2)-O(9)                       | 2.447(8)  | Sm(3)-O(5)        | 2.477(8)  | Sm(4)-O(3)       | 2.418(8)  |
| Sm(1)-O(12)                      | 2.464(8)  | Sm(2)-O(39)                      | 2.403(8)  | Sm(3)-O(6)        | 2.509(8)  | Sm(4)-O(4)       | 2.382(7)  |
| Sm(1)-O(37)                      | 2.467(9)  | Sm(2)-O(46)                      | 2.367(9)  | Sm(3)-O(7)        | 2.484(7)  | Sm(4)-N(4)       | 2.519(8)  |
| Sm(1)-N(1)                       | 2.519(9)  | Sm(2)-N(2)                       | 2.542(9)  | Sm(3)-N(3)        | 2.570(8)  |                  |           |
|                                  |           |                                  |           |                   |           |                  |           |
| O(2)-Sm(4)-O(21)                 | 71.7(3)   | O(22) <sup>#3</sup> -Sm(4)-O(2)  | 86.4(3)   | O(24)-Sm(4)-O(2)  | 80.5(4)   | O(4)-Sm(4)-N(4)  | 145.7(3)  |
| O(2) <sup>#3</sup> -Sm(4)-N(4)   | 63.2(3)   | O(22) <sup>#3</sup> -Sm(4)-O(21) | 79.3(4)   | O(24)-Sm(4)-O(3)  | 84.0(4)   | O(4)-Sm(4)-O(2)  | 119.9(3)  |
| O(22)-Sm(4)-N(4)                 | 74.3(3)   | O(23)-Sm(4)-O(24)                | 129.7(4)  | O(24)-Sm(4)-O(21) | 121.3(5)  | O(4)-Sm(4)-O(23) | 68.7(3)   |
| O(22) <sup>#3</sup> -Sm(4)-O(23) | 72.0(3)   | O(23)-Sm(4)-O(2)                 | 147.2(4)  | O(24)-Sm(4)-N(4)  | 75.4(3)   | O(4)-Sm(4)-O(3)  | 102.1(3)  |
| O(22) <sup>#3</sup> -Sm(4)-O(24) | 149.6(3)  | O(23)-Sm(4)-O(21)                | 80.0(4)   | O(3)-Sm(4)-N(4)   | 64.1(3)   | O(4)-Sm(4)-O(24) | 72.0(3)   |
| O(22) <sup>#3</sup> -Sm(4)-O(3)  | 82.3(3)   | O(23)-Sm(4)-O(3)                 | 75.1(4)   | O(3)-Sm(4)-O(2)   | 127.2(3)  |                  |           |
| $O(22)^{\#3}$ Sm(4) $O(4)$       | 137.6(3)  | O(23)-Sm(4)-N(4)                 | 129.5(3)  | O(4)-Sm(4)-O(21)  | 78.9(4)   |                  |           |

| No. | Туре  | Donor | H      | Acceptor | D - H | HA   | DA     | D- HA |
|-----|-------|-------|--------|----------|-------|------|--------|-------|
| 1   |       | O(21) | H(21B) | O(58)    | 0.85  | 2.38 | 2.9734 | 127   |
| 2   | Intra | O(23) | H(23A) | O(11)    | 0.85  | 1.82 | 2.6542 | 168   |
| 3   |       | O(23) | H(23B) | O(60)    | 0.85  | 1.96 | 2.8002 | 171   |
| 4   |       | O(24) | H(24A) | O(59)    | 0.85  | 2.54 | 2.8342 | 101   |
| 5   |       | O(24) | H(24B) | O(59)    | 0.85  | 2.33 | 2.8342 | 119   |
| 6   | Intra | O(25) | H(25A) | O(39)    | 0.85  | 2.07 | 2.864  | 155   |
| 7   |       | O(25) | H(25B) | O(41)    | 0.85  | 2.55 | 3.0519 | 119   |
| 8   | Intra | O(26) | H(26A) | O(2)     | 0.85  | 1.96 | 2.7081 | 147   |
| 9   |       | O(26) | H(26B) | O(57)    | 0.85  | 2.03 | 2.8813 | 177   |
| 10  | Intra | O(27) | H(27A) | O(39)    | 0.85  | 2.11 | 2.8218 | 140   |
| 11  |       | O(27) | H(27B) | 0(53)    | 0.85  | 2.07 | 2.8417 | 150   |
| 12  |       | O(29) | H(29A) | O(51)    | 0.85  | 2.26 | 2.8477 | 126   |
| 13  | Intra | O(29) | H(29B) | O(7)     | 0.85  | 1.86 | 2.681  | 163   |
| 14  |       | O(30) | H(30B) | O(54)    | 0.85  | 2.18 | 2.7972 | 129   |
| 15  |       | O(31) | H(31A) | 0(55)    | 0.85  | 1.97 | 2.8175 | 175   |
| 16  | Intra | O(32) | H(32A) | 0(12)    | 0.85  | 2.28 | 2.8222 | 121   |
| 17  | Intra | O(32) | H(32B) | 0(31)    | 0.85  | 2.43 | 3.1952 | 150   |
| 18  | Intra | O(33) | H(33A) | 0(9)     | 0.85  | 1.86 | 2.6644 | 158   |
| 19  |       | O(33) | H(33B) | 0(56)    | 0.85  | 1.96 | 2.7952 | 167   |
| 20  |       | O(34) | H(34A) | O(62)    | 0.85  | 2.07 | 2.8998 | 166   |
| 21  | Intra | O(35) | H(35A) | O(35)    | 0.85  | 2.19 | 2.8853 | 139   |
| 22  | Intra | O(37) | H(37A) | O(3)     | 0.85  | 1.92 | 2.7697 | 174   |
| 23  |       | O(37) | H(37B) | 0(41)    | 0.85  | 1.96 | 2.791  | 164   |
| 24  |       | O(38) | H(38A) | O(25)    | 0.85  | 2.12 | 2.8396 | 143   |
| 25  |       | O(38) | H(38B) | O(88)    | 0.85  | 2.42 | 3.1866 | 150   |
| 26  |       | O(40) | H(40A) | O(28)    | 0.85  | 1.91 | 2.6618 | 147   |
| 27  |       | O(40) | H(40B) | O(54)    | 0.85  | 1.99 | 2.8289 | 170   |
| 28  |       | O(41) | H(41A) | O(65)    | 0.85  | 2.33 | 3.1728 | 169   |
| 29  |       | O(41) | H(41B) | O(25)    | 0.85  | 2.27 | 3.0519 | 153   |

"Cacl-OH" of Wingx and "Hadd" of Olex2 are used to place the hydrogen theoretically, but still there are some hydrogen atoms cannot be placed in sensible positions. According to the CIF of reference #8 (http://pubs.acs.org/doi/suppl/10.1021/ic801846h/suppl\_file/ic801846h\_si\_002.cif), these hydrogen atoms are reserved.

| No. | Туре  | Donor | H      | Acceptor | D - H | HA   | DA I   | ) - HA |
|-----|-------|-------|--------|----------|-------|------|--------|--------|
| 1   | Intra | O(36) | H(1)   | O(33)    | 0.9   | 1.95 | 2.7729 | 148    |
| 2   |       | O(34) | H(34A) | O(7)     | 0.85  | 2.42 | 3.0028 | 126    |
| 3   |       | O(34) | H(34B) | O(8)     | 0.85  | 2.50 | 3.2683 | 151    |
| 4   |       | O(35) | H(35A) | O(13)    | 0.85  | 2.41 | 2.9998 | 127    |
| 5   |       | O(35) | H(35A) | O(17)    | 0.85  | 2.5  | 3.065  | 125    |
| 6   |       | O(35) | H(35B) | F(42)    | 0.85  | 2.36 | 2.8523 | 117    |
| 7   |       | O(36) | H(36)  | O(4)     | 0.85  | 2.58 | 3.1262 | 123    |
| 8   |       | O(37) | H(37B) | O(16)    | 0.85  | 2.15 | 2.96   | 158    |
| 9   |       | O(38) | H(38A) | O(19)    | 0.85  | 2.21 | 2.8055 | 127    |
| 10  |       | O(38) | H(38A) | O(7)     | 0.85  | 2.45 | 3.2568 | 159    |
| 11  |       | O(38) | H(38B) | F(42)    | 0.85  | 2.37 | 2.8532 | 117    |
| 12  |       | O(39) | H(39A) | O(1A)    | 0.85  | 2.57 | 3.1948 | 131    |
| 13  |       | O(39) | H(39A) | O(2)     | 0.85  | 2.27 | 2.9313 | 135    |
| 14  | Intra | O(40) | H(40A) | O(30)    | 0.85  | 1.94 | 2.7671 | 164    |
| 15  |       | O(40) | H(40B) | O(9)     | 0.85  | 2.32 | 3.16   | 168    |
| 16  |       | O(40) | H(40B) | O(10)    | 0.85  | 2.56 | 3.0096 | 114    |
| 18  |       | O(41) | H(41B) | O(11)    | 0.85  | 2.26 | 2.6987 | 112    |

Tab. S2.2 H-Bond Distances (Å) and Angles (deg) of Coordinate and free H<sub>2</sub>O molecule in 3<sup>a</sup>, H atoms add by Platon 1.15 and Olex2 1.1

"Cacl-OH" of Wingx and "Hadd" of Olex2 are used to place the hydrogen theoretically, but still there are some hydrogen atoms cannot be placed in sensible positions. According to the CIF of reference #8 (http://pubs.acs.org/doi/suppl/10.1021/ic801846h/suppl\_file/ic801846h\_si\_002.cif), these hydrogen atoms are reserved.