Supplementary Data of paper entitled "2-line ferrihydrite: Synthesis, characterization and its adsorption behaviour for removal of Pb(II), Cd(II), Cu(II) and Zn(II) from aqueous solutions", by K.Rout, M. Mohapatra and S. Anand

Table S1

Comparison of synthesis procedure of 2-line ferrihydrite by precipitation

Material and condition	Characterisation	Property studied	Ref.
0.05M Fe(NO ₃) ₃ neutralised with 1M NaOH till pH 7	XRD and pore size distribution	Pore size distribution	[12]
0.2MFe(NO3)3neutralisedwirh1MNaOH tillpH 7.5	XRD, Raman, TEM, SEM	Arsenic adsorption	[13]
Fe(NO ₃) ₃ .9H ₂ O soln. neutralised with NH ₄ OH soln. till pH 10	Mossbauer spectroscopy, and XAFS	surface structure and its effect on phase transformation	[14]
Cornell and Schwertmann method	-	Adsorption studies of Mo and V onto ferrihydrite	[15]
Fe(NO ₃) _{3.} 9H ₂ O soln. neutralised with KOH soln till pH 7.5.	FT-IR, Raman	Thermal transformations of ferrihydrite	[16]
1.48 M FeC1 ₃ soln. + 1.48 M H ₃ BO ₃ soln neutralised with I.1 M Na ₂ CO ₃	XRD, Mossbauer spectroscopy	Ferrihydrite modification by boron doping	[17]
Schwertmann and Cornell method	-	Arsenite and Arsenate Adsorption:	[18]
36 mM Fe(NO ₃) ₃ soln. + 12 mM NaNO ₃ soln neutralised with 4 M NaOH till pH 8.0	-	Modelling molybdate and tungstate adsorption to ferrihydrite	[19]

Ref. 12-19 of main manuscript

[12] Peter G. Weidler, J. Porous Mater. 1997, 4, 165.

[13] Z. Li, T. Zhang, K. Li, *Dalton Trans.*, 2011, 40, 2062.

- [14] J. Zhao, E. Huggrns, Z. Feng, G. P. Huffman, Clays and Clay Minerals, 1994, 42, 737.
- [15] L. Brinza, L.G. Benning, P.J. Statham, Mineralogical Magazine, 2008, 72, 385.
- [16] L. Mazzetti, P.J. Thistlethwaite, J. Raman Spectrosc. 2002, 33, 104.
- [17] J.G. Stevens, A.M. Khasanov, M.S. Grasettewhite, *Hypetfine Interactions*, 2003, 151/152, 2830.
- [18] K.P. Raven, A. Jain, R. Loeppert, Environ. Sci. Technol. 1998, 32, 344.
- [19] J.P. Gustafsson, Chemical Geology 2003, 200, 105.

<u>Fig. S1</u>

Fig. S1 TG-DTA traces of 2-line ferrihydrite sample

Fig. S1 gives TG-DTA traces of 2-line ferrihydrite. From the mass loss could be divided in three steps in the temperature range of 30–400°C considering the peaks observed in DTA trace. The first mass loss step with a weight loss 7.2% in the temperature range of 30-140°C accompanied with an endo peak at 140°C was mainly assigned to the removal of free water or physisorbed water .²⁴ The second weight loss of 16.5% in the range of 140-270°C

accompanied with an endo-peak at 250°C was associated with partial decomposition of ferrihydrite.²⁵ Synthetic ferrihydrite generally gives a single sharp exothermic DTA peak between 300 to 350°C. ²⁶ Weight loss of 8.9% corresponding to an exo- peak at 340°C could be due to final formation of hematite which results from energy released on the re-crystallization of hematite.²⁷

- Ref. 24-27 of main manuscript
- [24] M.A. Strongin, D.R. Parise, Chem. Mater. 2007, 19, 1489.
- [25] H. Liu, Y.Wang, Y. Ma, Y. Wei, G. Pan, Chemosphere, 2010,79, 802.
- [26] L. Carlson, U. Schwertmann, Geochim. Cosmochim. Acta, 1981, 45, 421.
- [27] J.Yu, M. Park, J. Kim, Geochem. J. 2002, 36, 119.

Fig. S2 shows the SAED pattern with diffused rings confirming the powder to be weakly crystalline.

Fig. S2 SAED pattern of 2-line ferrihydrite