Electronic Supplementary Information (ESI) 1 <u>Synthesis of Ru complex (B)</u>^{7, 66}

Preparation of H2NCH2CH2NHSO2C8H7

A CH₂Cl₂ solution (15 mL) of 4-vinylbenzensulfonyl chloride (5 mL) was dropped into 5 mL of ethylene diamine dissolved in 10 mL of CH₂Cl₂, and the mixture was stirred for 3 h. CH₂Cl₂ (200 mL), H₂O (100 mL), and HCl/ H₂O (2 M, 200 mL) were added to the solution, and the water layer was washed with CH₂Cl₂ twice. After filtration, the water layer was neutralized by KOH solution (2 M, pH 9-10) and extracted with 150 mL of CH₂Cl₂ three times. The organic layers were dried with Na₂SO₄, and filtrated, and the solvents were evaporated. ¹H NHR (400 MHz, CDCl₃, 298 K): δ in ppm = 2.80 (m, 2H; CH₂), 2.97 (m, 2H; CH₂), 5.43 (d, 1H; CH=CH₂), 5.87 (d, 1H; CH=CH₂), 6.75 (dd, 2H; CH=CH₂), 7.52 (d, 2H; C₆H₄), 7.82 (d, 2H; C₆H₄). ¹³C NMR (101 MHz, CDCl₃, 298 K): δ in ppm = 40.92, 45.40 (NCH₂), 117.33, 126.76, 127.38, 135.36, 138.76, 141.74 (C₆H₄-CH=CH₂).

Synthesis of Ru precursor [(p-cymene)Ru{H₂NCH₂CH₂NSO₂C₈H₇}Cl]

H₂NCH₂CH₂NHSO₂C₈H₇ (226 mg, 1 mmol) dissolved in CH₂Cl₂/CH₃OH (1/1, 15 mL) and NaOCH₃ (1 mmol) in CH₃OH (0.5 mL) were slowly added to a CH₂Cl₂ solution (20 mL) of Ru₂(*p*-cymene)₂Cl₄ (306 mg, 0.5 mmol). The mixture was stirred for 3 h under N₂ atmosphere, and then the solvent was evaporated. The residue was dissolved in CH₂Cl₂/Et₂O (2/1, 30 mL), and after filtration the solution was reduced to 2 mL under vacuum. *n*-Hexane (15 mL) was added, and the precipitate was dried under vacuum. ¹H NMR (400 MHz, CDCl₃/CD₃OD, 4:1, 298 K): δ in ppm = 1.26 (d, 6H; CH(CH₃)₂), 2.15 (s, 3H; CH₃, (*p*-cymene)), 2.30 (brd, 4H; NCH₂), 2.83 (sept, 1H; CH(CH₃)₂), 5.29 (d, 1H; CH=CH₂), 5.47 (brd, 2H; CH (*p*-cymene)), 5.62 (d, 2H; CH (*p*-cymene)), 5.79 (d, 1H; CH=CH₂), 6.70 (dd, 1H; CH=CH₂), 7.40 (d, 2H; C₆H₄), 7.81 (d, 2H; C₆H₄). ¹³C NMR (101 MHz, CDCl₃/CD₃OD, 4:1, 298 K): δ in ppm = 18.56, 22.53 (CH₃, *p*-cymene), 30.76 (CH, *p*-cymene), 47.11, 47.37 (NCH₂), 81.29 (CH, *p*-cymene), 96.66, 102.46 (C, *p*-cymene), 115.57, 126.08, 127.75, 136.24, 139.88, 142.46 (C₆H₄-CH=CH₂).

Synthesis of sulfoxides and sulfones

General procedure for the synthesis of sulfoxides and sulfones

To a solution of 2 g of organic sulfide in CH_2Cl_2 (20 mL), *m*-CPBA (1 and 2 equivalent for the synthesis of sulfoxide and sulfone, respectively) in CH_2Cl_2 (20 mL and 30 mL, respectively) was added slowly at 273 K. After stirring for 3 h at 273 K, an aqueous saturated NaHCO₃

solution (10 mL) was added to quench the reaction mixture. It was stirred for another 1 h at room temperature. The aqueous part was separated and extracted with CH_2Cl_2 (20 mL) two times. The combined organic parts were washed with water (50 mL), brine (20 mL × 2) and dried over MgSO₄. The crude compound was purified by silica gel column chromatography.

4-Chlorophenyl methyl sulfoxide Eluent: EtOAc; yield: 73 %; ¹H NMR (400 MHz, CDCl₃, 298 K): δ in ppm = 2.72 (s, 3H; CH₃), 7.50 (dd, 2H; C₆H₄), 7.59 (dd, 2H; C₆H₄). ¹³C NMR (101 MHz, CDCl₃, 298 K): δ in ppm = 44.04, 124.96, 129.62, 137.17, 144.26.

4-Fluorophenyl methyl sulfoxide Eluent: EtOAc; **y**ield: 76 %; ¹H NMR (400 MHz, CDCl₃, 298 K): δ in ppm = 2.72 (d, 3H; CH₃), 7.23 (m, 2H; C₆H₄), 7.66 (m, 2H; C₆H₄). ¹³C NMR (101 MHz, CDCl₃, 298 K): δ in ppm = 44.17, 116.57, 116.80, 125.80, 125.89, 141.16, 141.20, 163.05, 165.55.

Phenyl *p***-tolyl sulfoxide** Eluent: hexane/EtOAc (6/4); yield: 86 %; ¹H NMR (400 MHz, CDCl₃, 298 K): δ in ppm = 2.36 (s, 3H; CH₃), 7.25 (d, 2H; Ar), 7.44 (m, 3H; Ar), 7.53 (d, 2H; Ar), 7.62 (m, 2H; Ar). ¹³C NMR (101 MHz, CDCl₃, 298 K): δ in ppm = 21.40, 124.69, 124.99, 129.25, 130.02, 130.86, 141.63, 142.49, 145.82.

Phenyl *p***-tolyl sulfone** Eluent: hexane/EtOAc (6/4); yield: 82 %; ¹H NMR (400 MHz, CDCl₃, 298 K): δ in ppm = 2.39 (s, 3H; CH₃), 7.29 (d, 2H; Ar), 7.51 (m, 3H; Ar), 7.82 (d, 2H; Ar), 7.93 (d, 2H; Ar). ¹³C NMR (101 MHz, CDCl₃, 298 K): δ in ppm = 21.56, 127.50, 127.72, 129.21, 129.91, 132.99, 138.65, 141.99, 144.15.

Benzyl methyl sulfoxide Eluent: EtOAc; yield: 84 %; ¹H NMR (400 MHz, CDCl₃, 298 K): δ in ppm = 2.45 (s, 3H; CH₃), 3.92 (d, 1H; CH₂), 4.05 (d, 1H; CH₂), 7.28-7.40 (m, 5H; C₆H₅). ¹³C NMR (101 MHz, CDCl₃, 298 K): δ in ppm = 37.28, 60.30, 128.44, 128.98, 129.66, 130.02.

Allyl phenyl sulfoxide Eluent: hexane/EtOAc (4/6); yield: 96 %; ¹H NMR (400 MHz, CDCl₃, 298 K): δ in ppm = 3.55 (m, 2H; CH₂), 5.20 (d, 1H; CH=CH₂), 5.33 (d, 1H; CH=CH₂), 5.65 (m, 1H; CH=CH₂), 7.48-7.62 (m, 5H; C₆H₅). ¹³C NMR (101 MHz, CDCl₃, 298 K): δ in ppm = 60.83, 123.92, 124.36, 125.21, 129.05, 131.13, 142.83.

Electronic Supplementary Information (ESI) 2 GC analysis

Table SI 1Detail of GC analysis

Column temperature	Comion gos	Compound	Retention
programming	Carrier gas	Compound	time /min
		Methyl phenyl sulfide (MPS)	10.6
		Methyl phenyl sulfoxide (MPSO)	13.5
Holding time: 2 min		Methyl phenyl sulfone (MPSO ₂)	14.2
Pote of heating: 15 K/min	Ца	Dodecane	11.8
Final tamp : $472 V$	Inlet press	EtOAc	3.3
Final holding time: 5 min	100 kPo	IBA	2.7
Injection temp : 523 K	100 KF a	Propanal	2.4
Detector temp : 523 K		1-hexanal	6.4
Delector temp 525 K		<i>n</i> -butanal	3.3
		Benzaldehyde	9.2
Column initial temp.: 323 K		4-Fluorothioanisole	12.1
Holding time: 3 min	TT	4-Fluorophenyl methyl sulfoxide	16.2
Rate of heating: 10 K/min	He	4-Fluorophenyl methyl sulfone	17.0
Final temp.: 503 K	Inlet press.:	IBA	2.7
Final holding time: 3 min	100 kPa	Dodecane	14.2
Injection temp.: 5/3 K		EtOAc	3.3
Detector temp.: 5/3 K			
Column initial temp.: 323 K		4-Chlorothioanisole	14.7
Holding time: 3 min	TT	4-Chlorophenyl methyl sulfoxide	18.1
Rate of heating: 10 K/min	He	4-Chlorophenyl methyl sulfone	18.7
Final temp.: 503 K	Inlet press.:	IBA	2.2
Final holding time: 5 min	130 kPa	Dodecane	13.3
Injection temp.: 523 K		EtOAc	2.9
Detector temp.: 523 K			
Column initial temp.: 323 K		Allyl phenyl sulfide	13.6
Holding time: 3 min		Allyl phenyl sulfoxide	17.5
Rate of heating: 10 K/min	He	Allyl phenyl sulfone	18.2
Final temp.: 503 K	Inlet press.:	IBA	2.1
Final holding time: 5 min	130 kPa	Dodecane	13.2
Injection temp.: 523 K		EtOAc	2.5
Detector temp.: 523 K			

Column initial temp.: 323 K			
Holding time: 3 min		Benzyl methyl sulfide	12.8
Rate of heating: 10 K/min	Не	Benzyl methyl sulfoxide	17.6
Final temp.: 473 K	Inlet press.:	Benzyl methyl sulfone	18.2
Final holding time: 10 min	130 kPa	IBA	1.9
Injection temp.: 523 K		Dodecane	13.2
Detector temp.: 523 K		EtOAc	2.1
Column initial temp.: 323 K			
Holding time: 3 min		Dibutyl sulfide	10.5
Rate of heating: 15 K/min	Не	Dibutyl sulfoxide	14.2
Final temp.: 473 K	Inlet press.:	Dibutyl sulfone	14.8
Final holding time: 5 min	100 kPa	IBA	2.7
Injection temp.: 523 K		Dodecane	11.8
Detector temp.: 523 K		EtOAc	3.3
Column initial temp.: 323 K			
Holding time: 8 min		Tetrahydrothiophene	7.0
Rate of heating: 10 K/min	Не	Tetrahydrothiophene 1-oxide	17.2
Final temp.: 503 K	Inlet press.:	Sulfolane	18.5
Final holding time: 5 min	130 kPa	IBA	2.1
Injection temp.: 523 K		Dodecane	18.2
Detector temp.: 523 K		EtOAc	2.9
Column initial temp.: 323 K			
Holding time: 3 min		Diphenyl sulfide	19.1
Rate of heating: 10 K/min	Не	Diphenyl sulfoxide	22.9
Final temp.: 503 K	Inlet press.:	Diphenyl sulfone	23.6
Final holding time: 5 min	130 kPa	IBA	2.1
Injection temp.: 523 K		Dodecane	13.1
Detector temp.: 523 K		EtOAc	2.5
Column initial temp.: 323 K			
Holding time: 3 min		Phenyl <i>p</i> -tolyl sulfide	16.1
Rate of heating: 15 K/min	Не	Phenyl <i>p</i> -tolyl sulfoxide	18.8
Final temp.: 523 K	Inlet press.:	Phenyl <i>p</i> -tolyl sulfone	19.4
Final holding time: 5 min	130 kPa	IBA	2.1
Injection temp.: 573 K		Dodecane	10.9
Detector temp.: 573 K		EtOAc	2.5

Figure SI 1 Calibration curves of the standard compounds.

Electronic Supplementary Information (ESI) 3 <u>Characterization</u>

Fig. SI 2 (a) ²⁹Si NMR of (i) *p*-styryltrimethoxysilane (liquid-state NMR in CDCl₃), (ii) functionalized SiO₂ (Aerosil 300) with *p*-styryltrimethoxysilane (**A**) (solid-state MAS) and (iii) SiO₂ (Aerosil 300) (solid-state MAS). (b) ¹³C NMR of (i) *p*-styryltrimethoxysilane (liquid-state NMR in CDCl₃) and (ii) functionalized SiO₂ (**A**) (solid-state MAS).

Fig. SI 3 XPS spectra of fresh C and D (Ru 1.6 wt%). (a) Ru $3p_{3/2}$ and (b) Cl 2p.

Fig. SI 4 DR-UV/vis spectra of fresh C and D. Solid line: Ru 0.4 wt%, dotted line: Ru 1.0 wt%, and dashed line: Ru 1.6 wt%.

Fig. SI 5 Ru K-edge XANES spectra (I), EXAFS oscillations (II), and their EXAFS Fourier transforms (III) of **B**, **C**, **D**, and **D**-rxn measured at 20 K.

Shell	CN	Distance /nm $\Delta E_0 / \text{eV}$ σ^2 / nm^2		σ^2/nm^2		
B $k = 30-170 \text{ nm}^{-1}$, $R = 0.115-0.25 \text{ nm}$, $R_f = 1.0\%$						
Ru-N	2.0	0.208 ± 0.002 8 ± 5 (0.7)		$(0.7 \pm 2.3) \times 10^{-6}$		
Ru-C	6.0	0.219 ± 0.002 -1 ± 3		$(1 \pm 1) \times 10^{-5}$		
Ru-Cl	1.0	0.242 ± 0.003	8 ± 8	$(2 \pm 1) \times 10^{-5}$		
B $k = 30-170 \text{ nm}^{-1}$, $R = 0.115-0.25 \text{ nm}$, $R_f = 1.0\%$						
Ru-N	1.9 ± 1.0	0.208 ± 0.003	8 ± 10	0.7×10^{-6}		
Ru-C	5.9 ± 2.4	0.219 ± 0.002	-1 ± 6	1×10^{-5}		
Ru-Cl	1.0 ± 0.2	0.242 ± 0.003	8 ± 10	2×10^{-5}		
C 1.6 wt% <i>k</i> =	$= 30-170 \text{ nm}^{-1}, R =$	$0.115-0.25$ nm, $R_{\rm f} = 0.5\%$	-	-		
Ru-N	2.0 ± 0.8	0.210 ± 0.002	4 ± 12	0.7×10^{-6}		
Ru-C	4.5 ± 1.5	0.221 ± 0.002	2 ± 9	1×10^{-5}		
Ru-Cl	0.8 ± 0.1	0.245 ± 0.002	10 ± 5	2×10^{-5}		
C 0.4 wt% $k = 30-170 \text{ nm}^{-1}$, $R = 0.115-0.25 \text{ nm}$, $R_f = 0.6\%$						
Ru-N	1.9 ± 0.7	0.210 ± 0.002 5 ± 9		0.7×10^{-6}		
Ru-C	4.8 ± 1.7	0.221 ± 0.002 0 ± 6		1×10^{-5}		
Ru-Cl	1.1 ± 0.2	0.244 ± 0.002	7 ± 6	2×10^{-5}		
D 1.6 wt% $k = 30-170 \text{ nm}^{-1}$, $R = 0.13-0.24 \text{ nm}$, $R_f = 1.1\%$						
Ru-N	2.7 ± 1.2	0.206 ± 0.002	0 ± 4	$(2 \pm 2) \times 10^{-5}$		
Ru-Cl	1.4 ± 1.4	0.235 ± 0.006	5 ± 9	$(8 \pm 8) \times 10^{-5}$		
D 0.4 wt% $k = 30-170 \text{ nm}^{-1}$, $R = 0.13-0.24 \text{ nm}$, $R_f = 1.2\%$						
Ru-N	3.0 ± 1.1	0.206 ± 0.002	2 ± 4	$(2 \pm 2) \times 10^{-5}$		
Ru-Cl	1.3 ± 1.2	0.236 ± 0.005	6 ± 8	$(7 \pm 8) \times 10^{-5}$		
D-rxn 1.6 wt% $k = 30-170 \text{ nm}^{-1}$, $R = 0.13-0.24 \text{ nm}$, $R_f = 0.3\%$						
Ru-N	3.4 ± 1.1	0.208 ± 0.002 2 ± 3		$(3 \pm 1) \times 10^{-5}$		
Ru-Cl	1.3 ± 1.2	0.235 ± 0.007	6 ± 9	$(10 \pm 7) \times 10^{-5}$		
D-rxn 0.4 wt% $k = 30-170 \text{ nm}^{-1}$, $R = 0.13-0.24 \text{ nm}$, $R_f = 0.3\%$						
Ru-N	3.7 ± 0.7	0.208 ± 0.001	2 ± 3	$(3 \pm 1) \times 10^{-5}$		
Ru-Cl	1.4 ± 1.2	0.238 ± 0.007	10 ± 9	$(13 \pm 8) \times 10^{-5}$		

Table SI 2Curve-fitting results of Ru K-edge EXAFS Fourier transforms of C and D (Ru 0.4wt% and 1.6 wt%)

Electronic Supplementary Information (ESI) 4 <u>Sulfoxidation</u>

Reactant	No catalyst			Catalyst D		
	Time /min	Conv. % ^b	MPSO Selectivity % ^c	Time /min	Conv. % ^b	MPSO Selectivity % ^c
S_	0	0	-	0	0	-
	1	39	97	1	61	>99
	3	52	>99	3	67	98
	5	57	>99	5	70	98

 Table SI 3
 MPS oxidation with peracetic acid^a

^{*a*} Ru = 1.5×10^{-6} mol, MPS = 1.5×10^{-4} mol, CH₃CO₃H = 1.5×10^{-4} mol, dodecane = 1.5×10^{-4} mol, EtOAc 20 ml, 278 K. ^{*b*} MPS conversion % = (initial MPS – final MPS)/(initial MPS) × 100. ^{*c*} MPSO selectivity % = produced MPSO/(produced MPSO + produced MPSO₂) × 100.