Supporting Information of

Coordination site-Dependent Cation Binding and Multi-responsible Redox Properties of Janus-Head Metalloligand, [Mo^V(1,2mercaptophenolato)₃]⁻

Takeshi Matsumoto,^b Masanori Wakizaka,^a Hirokazu Yano,^a Atsushi Kobayashi,^a Ho-Chol Chang,^{*a} and Masako Kato^{*a,b}

^{*a*} Division of Chemistry, Faculty of Science, Hokkaido University, North-10, West-8, Kita-ku, Sapporo 060-0810, Japan. Fax: +81-11-706-3447; Tel: +81-11-706-3817; E-mail: mkato@sci.hokudai.ac.jp.

^b Center for Strategic Utilization of Elements, Faculty of Science, Hokkaido University, North-10, West-8, Kita-ku, Sapporo 060-0810, Japan.

Contents.

- 1. Synthetic procedures of Fe^{II}-, Co^{II}-, and Ni^{II}-powder samples, and 4.1.5CH₂Cl₂.
- 2. Table 1S. Crystallographic data for 4.1.5CH₂Cl₂.
- 3. Figure 1S. Crystal structure of 4.1.5CH₂Cl₂.
- 4. Chart 1S. Definitions of OCT/TP(%) criteria.
- 5. Table 2S. Octahedral/trigonal-prismatic parameters (OCT/TP (%)) around [Mo^V(mp)₃]⁻.
- 6. **Table 3S.** Ligand bending angles (η) in mp^{2–}.
- 7. **Table 4S.** Bond distances (Å) in mp^{2-} .
- 8. Table 5S. Mo–O and Mo–S bond distances (Å) of 4.1.5CH₂Cl₂.
- 9. Figure 2S. Solid state UV-vis-NIR spectra of Mn^{II}-, Fe^{II}-, Co^{II}-, and Ni^{II}-powder samples.
- 10. Figure 3S. IR spectra of Mn^{II} -, Fe^{II}-, Co^{II}-, and Ni^{II}-powder samples.
- 11. Figure 4S. Intramolecular (A) and intermolecular $\pi \pi$ interaction (B) in 3.1.5CH₂Cl₂.
- 12. Figure 5S. Crystal packing of 5.
- 13. Table 6S. UV-Vis-NIR spectroscopic data of 1-3 and 5 in solution and in the solid states.
- 14. Figure 6S. Differential spectra of $\Delta \{ \epsilon(1) \epsilon(2) \}$ and $\Delta \{ \epsilon(3) 2 \times \epsilon(2) \}$ in CH₃CN and *o*-Cl₂C₆H₄ solution.
- 15. Figure 7S. CVs and DPVs of 2 (1 × 10⁻³ M) in CH₃CN with 0.05 M TBAP, o-Cl₂C₆H₄ with 0.05 M TBAP, and o-Cl₂C₆H₄ with 0.05 M TBAFB.
- 16. Figure 8S. CVs and DPVs of 1 (1 × 10⁻³ M) in CH₃CN with 0.05 M TBAP, o-Cl₂C₆H₄ with 0.05 M TBAP, and o-Cl₂C₆H₄ with 0.05 M TBAFB.
- 17. Figure 9S. CVs and DPVs of 3 (1 × 10⁻³ M) in CH₃CN with 0.05 M TBAP, o-Cl₂C₆H₄ with 0.05 M TBAP, and in o-Cl₂C₆H₄ with TBAFB.
- 18. Figure 10S. CV of $Mn^{II}(H_2O)_6(ClO_4)_2$ in CH_3CN with 0.1 M TBAPF₆.
- 19. Scheme 1S. Plausible mechanisms of electrochemically irreversible reactions of 3 in CH₃CN solution.

20. Figure 11S. UV-vis-NIR spectra, CVs, and DPVs of 1-3 in o-Cl₂C₆H₄ solution containing 0.05

M TBAP.

21. Table 7S. Redox potentials of 1, 2, and 3 in CH₃CN solution containing 0.05 M TBAFB.

Synthesis of Fe^{II} -powder sample. A dark brown MeOH (0.7 mL) solution of 1 (25 mg, 0.039 mmol) was added to a pink MeOH (0.3 mL) solution of $Fe^{II}Cl_2 \cdot 4H_2O$ (15.5 mg, 0.078 mmol). After stirring for 1 hour, a reddish-brown precipitate was obtained. This was filtered, and washed with H_2O (0.5 mL × 2) and MeOH (0.3 mL × 2). The resulting reddish-brown powder was dried in vacuo and used for UV-vis-NIR measurements as Fe^{II} -powder sample.

Synthesis of { $Co^{II}(H_2O)(MeOH)[fac-Mo^{V}(mp)_3]_2$ }·1.5CH₂Cl₂ (4·1.5CH₂Cl₂). A dark brown MeOH (5 mL) solution of 1 (200 mg, 0.315 mmol) was added to a pink MeOH (1 mL) solution of Co^{II}Cl₂·4H₂O (125 mg, 0.632 mmol). After stirring for 1 hour, a reddish-brown precipitate was obtained. This was filtered, and washed with H₂O (3 mL × 2) and MeOH (1 mL × 2). The resulting reddish-brown powder was dried in vacuo and used for UV-vis-NIR measurements as Co^{II}-powder sample. For synthesis of crystal sample suitable for X-ray crystallographic analysis, this powder sample was dissolved in CH₂Cl₂ (20 mL), then *n*-hexane (20 mL) was layered onto this solution. After storage of this solution for 5 days at room temperature, reddish-brown crystals were obtained. After filtration and washing with *n*-hexane (2 mL × 3), followed by drying in vacuo, complex 4·1.5CH₂Cl₂ was isolated as reddish-brown crystals in 10% yield. Anal. Found: C, 39.21; H, 2.86. Calc. for C_{38.5}H₃₃Cl₃CoMoO₈S₆ (4·1.5CH₂Cl₂): C, 39.41; H, 2.86%. $\chi_M T_{300K} = 4.515$ emu·K·mol⁻¹.

Synthesis of Ni^{II}-powder sample. A dark brown MeOH (0.7 mL) solution of **1** (25 mg, 0.039 mmol) was added to a pink MeOH (0.3 mL) solution of Ni^{II}Cl₂·4H₂O (18.5 mg, 0.078 mmol). After stirring for 1 hour, a reddish-brown precipitate was obtained. This was filtered, and washed with H₂O (0.5 mL × 2) and MeOH (0.3 mL × 2). The resulting reddish-brown powder was dried in vacuo and used for UV-vis-NIR measurements as Ni^{II}-powder sample.

	$4 \cdot 1.5 CH_2 Cl_2$
formula	$C_{38.5}H_{33}Cl_{3}CoMo_{2}O_{8}S_{6}$
fw	1173.21
crystal size (mm ³)	0.05× 0.05× 0.05
crystal system	triclinic
space group	<i>P</i> -1(No. 2)
$a(\text{\AA})$	11.356(2)
$b(\text{\AA})$	13.024(2)
$c(\text{\AA})$	14.982(3)
<i>α</i> (°)	96.542(3)
β([°])	106.062(3)
γ(°)	95.802(3)
$V(\text{\AA}^3)$	2095.0(6)
<i>T</i> (K)	163
Ζ	2
$D_{\rm calc}({ m g~cm^{-3}})$	1.860
<i>F</i> (000)	1172
μ (Mo K α)(cm ⁻¹)	15.223
measured reflns.	14583
unique reflns.	9140
refined parameters	533
GOF on F^2	1.014
$R_{\rm int}$	0.025
$R_1^{\ a}$	0.0534
wR_2^{b} (all data)	0.1418

Table 1S. Crystallographic data for 4.1.5CH₂Cl₂.

 ${}^{a}R_{1} = \Sigma ||F_{o}| - ||F_{c}||/\Sigma |F_{o}|. {}^{b}wR_{2} = \{ [\Sigma w (F_{o}^{2} - F_{c}^{2})^{2}]/[\Sigma w (F_{o}^{2})^{2}] \}^{1/2}.$

Figure 1S. Asymmetric unit of 4.1.5CH₂Cl₂ with thermal ellipsoid plots for Mo (black), O (red), S (yellow), and Co (blue) (50% probability). Hydrogen atoms and solvent molecules are omitted, and carbon atoms are depicted as wireframe for clarity.

The complex 4.1.5CH₂Cl₂ is isomorphous with the 3.1.5CH₂Cl₂.

Chart 1S. Definitions of OCT/TP(%) criteria.

 ϵ_{corr} = 180–(90–EME_{intra}) [136(TP) ≤ EME_{trans} ≤ 180(OCT)]

		OCT/TP ^I	OCT/TP ^{II}	OCT/TP ^{III}
1		43.4	45.3	50.7
2		50.5	54.0	49.5
$3 \cdot 1.5 CH_2 Cl_2$	Mo1	38.2	39.6	45.0
	Mo2	44.6	46.7	51.6
$\textbf{4}{\cdot}1.5CH_2Cl_2$	Mo1	36.4	37.7	41.3
	Mo2	43.5	45.3	50.1
5		63.5	68.8	76.2

Table 2S. Geometrical parameters for 1-5.

	η / $^{\circ}$				
	1	2	$3 \cdot 1.5 CH_2 Cl_2$	4 ·1.5CH ₂ Cl ₂	5
L1	9.27*	7.60	4.48*	4.43*	11.32*
L2	9.27*	6.60	18.92*	20.55*	9.26*
L3	9.27*	18.0	10.99	10.60	3.35*
L4			3.19*	2.81*	
L5			16.57*	18.34*	
L6			9.58	9.47	
Average	9.27	10.73	10.62	11.03	7.98

Table 3S. Bending angles (η) in mp²⁻ of 1-5.

* Ligands directly attached to Na (1), Mn ($3\cdot 1.5CH_2Cl_2$), Co ($4\cdot 1.5CH_2Cl_2$), or Cu (4) atoms.

Table 4S. Bond distances (Å) of the mp^{2-} in 1-5.

		Å							
		а	b	с	d	e	f	g	h
1	L1*	1.361(4)	1.749(4)	1.375(6)	1.396(6)	1.429(5)	1.406(6)	1.384(8)	1.402(8)
2	L1	1.336(3)	1.746(3)	1.399(4)	1.393(4)	1.400(4)	1.384(5)	1.377(5)	1.387(6)
	L2	1.337(3)	1.748(3)	1.394(4)	1.399(4)	1.387(4)	1.378(5)	1.385(5)	1.382(6)
	L3	1.343(3)	1.751(3)	1.393(4)	1.397(4)	1.395(4)	1.378(4)	1.388(4)	1.385(5)
	Av.	1.339(3)	1.748(3)	1.395(4)	1.396(4)	1.394(4)	1.380(5)	1.383(5)	1.385(6)
$3 \cdot 1.5 CH_2 Cl_2$	L1*	1.367(7)	1.748(6)	1.395(7)	1.386(8)	1.397(9)	1.391(9)	1.374(9)	1.390(8)
	L2*	1.374(6)	1.751(5)	1.396(6)	1.395(8)	1.400(7)	1.378(8)	1.373(9)	1.386(7)
	L3	1.347(7)	1.749(5)	1.406(7)	1.396(7)	1.393(9)	1.395(9)	1.387(7)	1.390(8)
	L4*	1.363(6)	1.755(6)	1.409(8)	1.390(8)	1.399(9)	1.386(8)	1.381(10)	1.389(10)
	L5*	1.374(5)	1.740(5)	1.405(7)	1.377(7)	1.406(6)	1.387(6)	1.367(9)	1.394(8)
	L6	1.344(7)	1.740(5)	1.401(7)	1.389(7)	1.406(8)	1.380(9)	1.380(8)	1.396(8)
	Av.	1.362(6)	1.747(5)	1.402(7)	1.389(8)	1.400(8)	1.386(8)	1.378(9)	1.391(8)
$4 \cdot 1.5 CH_2 Cl_2$	L1*	1.361(7)	1.755(6)	1.401(6)	1.393(8)	1.388(8)	1.400(8)	1.370(8)	1.388(7)
	L2*	1.375(6)	1.749(5)	1.386(6)	1.395(7)	1.397(7)	1.376(8)	1.377(8)	1.396(7)
	L3	1.341(7)	1.748(5)	1.419(6)	1.387(7)	1.395(8)	1.390(9)	1.388(7)	1.388(7)
	L4*	1.364(6)	1.750(6)	1.397(7)	1.382(7)	1.411(8)	1.384(8)	1.372(9)	1.388(9)
	L5*	1.363(4)	1.746(5)	1.411(7)	1.386(7)	1.389(6)	1.379(6)	1.396(8)	1.396(8)
	L6	1.360(7)	1.752(5)	1.376(7)	1.398(7)	1.401(8)	1.375(8)	1.371(8)	1.398(8)
	Av.	1.361(6)	1.750(5)	1.398(7)	1.390(7)	1.397(8)	1.384(8)	1.379(8)	1.392(8)
5	L1*	1.352(6)	1.765(5)	1.395(7)	1.402(7)	1.386(7)	1.381(8)	1.383(8)	1.387(9)
	L2*	1.338(5)	1.754(5)	1.413(7)	1.400(7)	1.393(7)	1.396(8)	1.378(8)	1.363(9)
	L3*	1.349(5)	1.748(4)	1.396(7)	1.382(6)	1.402(7)	1.382(7)	1.396(7)	1.379(8)
	Av.	1.346(5)	1.756(5)	1.401(7)	1.395(7)	1.394(7)	1.386(8)	1.386(8)	1.376(9)

* Ligands directly attached to Na (1), Mn ($3\cdot 1.5CH_2Cl_2$), Co ($4\cdot 1.5CH_2Cl_2$), or Cu (5) atoms.

	4 •1.5CH ₂ Cl ₂
Mo(1)-O(1) [L1]	2.065(4)*
Mo(1)-O(2) [L2]	2.072(3)*
Mo(1)-O(3) [L3]	2.021(3)
Mo(2)-O(4) [L4]	2.063(3)*
Mo(2)-O(5) [L5]	2.068(3)*
Mo(2)-O(6) [L6]	2.017(3)
Mo(1)-S(1) [L1]	2.3224(15)
Mo(1)-S(2) [L2]	2.3190(12)
Mo(1)-S(3) [L3]	2.3490(15)
Mo(2)-S(4) [L4]	2.3297(14)
Mo(2)-S(5) [L5]	2.3033(12)
Mo(2)-S(6) [L6]	2.3559(15)

Table 5S. Selected bond distances (Å) for $4 \cdot 1.5 CH_2 Cl_2$.

* Distances between the Mo and chalcogen atoms directly attached to Co^{II} atom.

Figure 2S. (a) UV-Vis-NIR spectra of Mn^{II} powder sample (green line) and Mn^{II} crystal sample (purple line), and (b) **2** (black line), Mn^{II} powder sample (green line), Fe^{II} powder sample (orange line), Co^{II} powder sample (pink line), and Ni^{II} powder sample (right blue line) in the solid states using KBr pellets.

The characteristic absorption maxima around 390, 470, 590 nm are commonly observed for Mn^{II} crystal sample (**3**·1.5CH₂Cl₂) and powder samples of Mn^{II} , Fe^{II}, Co^{II}, and Ni^{II}, and these spectral features indicate that these divalent metal cations interact with metalloligand $[Mo^{V}(mp)_{3}]^{-}$ by similar manner.

Figure 3S. IR spectra of **2** (black line), Mn^{II} crystal sample (**3**·1.5CH₂Cl₂) (purple line), Mn^{II} powder sample (green line), Fe^{II} powder sample (orange line), Co^{II} powder sample (pink line), and Ni^{II} powder sample (right blue line) in the solid states.

Figure 4S. Intramolecular (A) and intermolecular π - π interaction (B) in **3**·1.5CH₂Cl₂. CH₂Cl₂ molecules are omitted for clarity. The mp²⁻ rings (L2, L5, and L6) involved with π - π interactions are drawn as space-filling model.

In the cases of $3\cdot1.5$ CH₂Cl₂, ΔA -chirality around the pseudo-octahedral Mo^v centers is unified in trinuclear units (Figure 3S). The intramolecular π - π interaction with the shortest carbon atom distances among the aromatic rings are 3.450 Å (denoted as A) is found between neighboring *fac*- $[Mo(mp)_3]^-$ units through L2 and L5, both of which are involved in coordination to additional metal (Mn^{II}). Furthermore, the optically isomeric trinuclear units are alternately stacked between layers through intermolecular π - π interaction between L6 and L6* (denoted as B), which are free from additional metal binding, with the closest carbon atom distances 3.480 Å. Since the other mp²⁻rings such as L1, L3, and L4 are not related with any intermolecular interaction, it is finally revealed that dimeric structures of trinuclear units through intermolecular π - π interaction are formed in crystals of $3\cdot1.5$ CH₂Cl₂.

Figure 5S. Crystal packing of **5** projected along with the *b*-axis. The Mo and Cu atoms are drawn as ball and stick models, and, C, N, O, and S atoms are depicted as wireframe for clarity, with omission of hydrogen atoms.

Complex	Condition	$\lambda, \mathrm{nm} (\varepsilon, \mathrm{M}^{-1} \mathrm{cm}^{-1})$					
1 ^{<i>a</i>}	Solid	370 ^{sh}	455	565	1186		
2^{a}	Solid	370 ^{sh}	421	494 ^{sh}	590	680 ^{sh}	1150
3 ^{<i>a</i>}	Solid	370 ^{sh}	470	590 ^{sh}	730 ^{sh}	1152	
5 ^{<i>a</i>}	Solid	390 ^{sh}	440	520	690 ^{sh}	840 ^{sh}	
1	CH ₃ CN	360(10800)	419(12500)	465(11000) ^{sh}	562(6960) ^{sh}	667(3590) ^{sh}	1052(790)
	o-Cl ₂ C ₆ H ₄	370(11800)	444(15900)	568 (9840) ^{sh}	986(1860)		
2	CH ₃ CN	362(10900)	418(12600)	472(10800) ^{sh}	560(7090) ^{sh}	667(3640) ^{sh}	1052(790)
	o-Cl ₂ C ₆ H ₄	367(12200)	420(14000)	470(11600) ^{sh}	562(7740)	667(3940) ^{sh}	1020(930)
3	CH ₃ CN	362(21500) ^{sh}	418(24800)	470(21500) ^{sh}	562(13900) ^{sh}	667(7120) ^{sh}	1052(1590)
	o-Cl ₂ C ₆ H ₄	365(20600) ^{sh}	454(28900)	564(16400) ^{sh}	690(5510) ^{sh}	995(3800)	

Table 6S. UV-Vis-NIR spectroscopic data of 1-3, and 5 in solution and in the solid states.

^{*a*} measured for KBr pellets. ^{*sh*} appeared as shoulder peak.

Figure 6S. Differential spectra of $\Delta \{ \epsilon(1) - \epsilon(2) \}$ (red line) and $\Delta \{ \epsilon(3) - 2 \times \epsilon(2) \}$ (green line) in (a) CH₃CN and (b) *o*-Cl₂C₆H₄ solution at 3×10^{-4} M at room temperature.

Figure 7S. CVs and DPVs of **2** (1×10^{-3} M) in CH₃CN with 0.05 M TBAP (black line), *o*-Cl₂C₆H₄ with 0.05 M TBAP (blue line), and *o*-Cl₂C₆H₄ with 0.05 M TBAFB (red line).

Figure 8S. CVs and DPVs of **1** (1×10^{-3} M) in CH₃CN with 0.05 M TBAP (black line), *o*-Cl₂C₆H₄ with 0.05 M TBAP (blue line), and *o*-Cl₂C₆H₄ with 0.05 M TBAFB (red line). For *o*-Cl₂C₆H₄ with TBAFB, negative region than -1.4 V could not be investigated due to its potential window.

The redox wave of **1** around -0.74 V indicates slight existence of assembly keeping associative interaction between the metalloligand and Na⁺.

Figure 9S. CVs and DPVs of **3** (1×10^{-3} M) in CH₃CN with 0.05 M TBAP (black line), *o*-Cl₂C₆H₄ with 0.05 M TBAP (blue line), and *o*-Cl₂C₆H₄ with 0.05 M TBAFB (red line). For *o*-Cl₂C₆H₄ with TBAFB, negative region than -1.4 V could not be investigated due to its potential window.

Figure 10S. CV of $Mn^{II}(H_2O)_6(ClO_4)_2$ (1 × 10⁻³ M) in CH₃CN with 0.1 M TBAPF₆.

Scheme 1S. Plausible mechanisms of electrochemically irreversible reactions of 3 in CH₃CN

solution.1

Figure 11S. (a) UV-Vis-NIR spectra of **1** (red line), **2** (black line), and **3** (green line) $(3 \times 10^{-4} \text{ M})$ in CH₃CN solution containing 1.5×10^{-2} M TBAFB. (b) CVs (black line) and DPVs (blue line) of **2** (top), **1** (middle), and **3** (bottom) $(1 \times 10^{-3} \text{ M})$ in CH₃CN solution containing 0.05 M TBAFB.

Complex	vs. Ag/Ag^+					
	$E^2_{1/2}^{\text{Red}}$	$E^{1}_{1/2}{}^{ m Red}$	$E^{1}_{1/2}^{\mathrm{Ox}}$			
1	-2.09	-0.98	0.14			
2	-2.14	-1.18	0.14			
3	-1.14^{irr}	-0.52	0.14			

Table 7S. Redox potentials of 1, 2, and 3 in CH_3CN containing

TBAFB.

irr Irreversible; the recorded potentials are cathodic potentials at a scan rate of 50 mV/s.

References

1. (a) R. A. Michelin, M. Mozzon and R. Bertani, *Coord. Chem. Rev.*, 1996, **147**, 299-338; (b)

V. Y. Kukushkin and A. J. L. Pombeiro, Chem. Rev., 2002, 102, 1771-1802.