Formation of stable iron/cobalt NHC complexes via unexpected ring opening and *in situ* generation of a tridentate ligand[†]

Gao-Feng Wang,^a Xiao-Jiao Song,^a Fei Chen,^a Yi-Zhi Li,^a Xue-Tai Chen,^a,* and

Zi-Ling Xue^{b,*}

^a State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China

^b Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, USA

Supplementary materials

^{*}Corresponding authors. Fax: +86-25-83314502. E-mail: <u>xtchen@netra.nju.edu.cn</u> (XTC); <u>xue@utk.edu</u> (ZLX).

General Procedures: The reagents employed were commercially available and used without further purification. Solvents were dried with 4A molecular sieves before use. Elemental analyses were performed on an Elementar Vario ELIII elemental analyzer. NMR spectra were obtained in DMSO- d_6 on a Bruker AM-500 spectrometer. Chemical shifts are given in parts per million for ¹H and ¹³C {H} NMR. The IR spectra were recorded on a Bruker Vector 22 spectrophotometer with KBr pellets in the 4000-400 cm⁻¹ region. Cyclic voltammetry measurements were conducted on a model CHI 660 D voltammetric analyzer with a glassy carbon as the working electrode, a polished platinum wire as the counter electrode, Ag/AgNO₃ as the reference electrode, and 0.1 M *n*-Bu₄NPF₆ as the supporting electrolyte at a scan rate of 0.1 V/s. Ferrocene was used in each experiment as an internal standard and all potentials are referenced to the ferrocene-ferrocenium couple. The magnetic properties of the products were obtained on superconducting quantum interference device (SQUID) magnetometer (Quantum Design) range of 1.8-300 K and in 2000 Oe. The following starting materials were prepared according to the literature methods: 4,4'-bi-1,2,4-triazole, 1,1'-dimethyl-4,4'-bi-1,2,4-triazolium diiodide and 1,1'-dibutyl-4,4'-bi-1,2,4-triazolium diiodide.¹ 1 (58%), 2 (52%) and 3 (46%) were prepared in a sealed tube when Et₃N was used as a base. Complexes 1-3 can be

prepared in air or under an inert atmosphere.

Synthesis of 1,1'-dibutyl-4,4'-bi-1,2,4-triazolium hexafluorophosphate:

1,1'-Dibutyl-4,4'-bi-1,2,4-triazolium diiodide (2.52 g, 5.0 mmol) was dissolved in 200 mL of water. Subsequent addition of NH₄PF₆ (1.96 g, 12 mmol) in 20 mL of water to

the aqueous solution afforded a white precipitate, which was collected by filtration and dried. Yield: 2.57 g, 95%. ¹H NMR (500 MHz, DMSO-*d*₆): 10.69 (s, NC*H*N, 2H), 9.71 (s, NC*H*N, 2H), 4.65 (t, 4H, ³*J*_{H-H} = 7.0 Hz, C*H*₂CH₂CH₂CH₃), 1.91 (m, 4H, CH₂C*H*₂CH₂CH₃), 1.41 (m, 4H, CH₂CH₂CH₂CH₃), 0.98(t, 6H, ³*J*_{H-H} = 7.0 Hz, CH₂CH₂CH₂CH₃). ¹³C NMR (100 MHz, DMSO-*d*₆): 144.6 (N*C*HN), 144.1 (N*C*HN), 53.1 (N*C*H₂), 30.4 (CH₂CH₂CH₂CH₃), 19.0 (CH₂CH₂CH₂CH₃), 13.6 (CH₂CH₂CH₂CH₃). Anal. Calcd for C₁₂H₂₂N₆F₁₂P₂: C, 26.68; H, 4.10; N, 15.56. Found: C, 26.86; H, 4.15; N, 15.60. IR (KBr, cm⁻¹): *v* 3156, 2965, 1627, 1569, 1465, 1076, 976, 844, 613, 561.

Synthesis of $[Fe(L^1)_2]I$ (1): A mixture of 1,1'-dimethyl-4,4'-bi-1,2,4-triazolium diiodide (0.42 g, 1.0 mmol), FeCl₂ (0.128 g, 1.00 mmol) and K₂CO₃ (0.276 g, 2.0 mmol) in 10 mL of CH₃CN was stirred at 70 °C for 12 h. After cooling to room temperature, the suspension was filtered. The remaining filtrate was allowed to stay in air for two weeks. X-ray quality crystals of **1** were grown from an acetonitrile solution by slow evaporation. Yield: 0.157 g, 56 % (based on the triazolium salt). Anal. Calcd for C₁₂H₁₈FeIN₁₂O₂: C, 26.44; H, 3.33; N, 30.83. Found: C, 26.40; H, 3.45; N, 30.75. IR (KBr, cm⁻¹): ν 1648, 1562, 1396, 1346, 1276, 964, 794. ESI-MS (m/z): $[M-I]^+$, 418.17 (100%).

Synthesis of $[Fe(L^2)_2]PF_6$ (2): The compound was obtained as a dark blue solid using the same procedure as for 1 by using 1, 1'-dibutyl-4, 4'-bi-1, 2, 4-triazolium hexafluorophosphate (0.54 g, 1.0 mmol), FeCl₂ (0.128 g, 1.00 mmol) and K₂CO₃ (0.276 g, 2.0 mmol). Crystals suitable for X-ray diffraction study were grown at room temperature by slow diffusion of diethyl ether into an acetonitrile solution of **2**. Yield: 0.243 g, 63 % (based on the triazolium salt). Anal. Calcd for C₂₄H₄₂F₆FeN₁₂O₂P: C, 39.41; H, 5.79; N, 22.98. Found: C, 39.44; H, 5.77; N, 23.09. IR (KBr, cm⁻¹): *v* 3143, 2964, 2874, 1581, 1463, 1427, 1344, 1266, 1169, 1116, 1055, 958, 843, 558, 526, 478. ESI-MS (m/z): [M–PF₆]⁺, 586.42 (100%).

Synthesis of [Co(L¹)₂]I (3): The compound was obtained as a red crystalline solid using the same procedure as for **1** by using 1,1'-dimethyl-4,4'-bi-1,2,4-triazolium diiodide (0.42 g, 1.0 mmol), CoCl₂ (0.14 g, 1.00 mmol) and K₂CO₃ (0.276 g, 2.0 mmol) as the starting material. X-ray quality crystals of **3** were grown from an acetonitrile solution by slow evaporation. Yield: 0.150 g, 53% (based on the triazolium salt). ¹H NMR (500 MHz, DMSO-*d*₆): 9.26 (s, NCHO, 1H), 7.99 (s, NCHN, 1H), 7.73 (s, NCHN, 1H), 3.63 (s, 3H, NCH₃), 3.31 (s, 3H, NCH₃). ¹³C NMR (125.7MHz, DMSO-*d*₆): 161.3 (NCHN), 150.4 (NCN), 145.4 (OCHN), 142.4 (NCHN), 40.17 (NCH₃), 34.9 (NCH₃). Anal. Calcd for C₁₂H₁₈CoIN₁₂O₂: C, 26.29; H, 3.31; N, 30.66. Found: C, 26.22; H, 3.45; N, 30.56. IR (KBr, cm⁻¹): *v* 3118, 2929, 1631, 1575, 1475, 1347, 1191, 1087, 1049, 944, 844, 792, 733, 609, 522, 484, 435. ESI-MS (m/z): [M–I]⁺, 421.17 (100%).

Synthesis of $[Fe(L^1)_2]$ (4): To a solution of 1 (0.163 g, 0.30 mmol) in CH₃CN-MeOH (10:1, 11 ml) under an inert atmosphere (N₂), KBH₄ (0.108 g, 2.0 mmol) was added. The reaction mixture was stirred at room temperature for 0.5 h, during which time the color changed from blue to bright red. The solvent is removed in vaccum and the residue is extracted into 20 mL of dry CH₂Cl₂. The resulting mixture is filtered, and the filtrate is concentrated in vaccum. On addition of 40 mL of dry Et₂O the crude products precipitate. Further purification can be achieved by recrystallization from dry CH₂Cl₂-Et₂O. The product was obtained as air and moisture-sensitive red blocks. Yield: 0.069 g, 55% (based on 1). ¹H NMR (500 MHz, CDCl₃): 8.33 (s, NCHO, 1H), 7.69 (s, NCHN, 1H), 7.56 (s, NCHN, 1H), 3.47 (s, 3H, NCH₃), 3.19 (s, 3H, NCH₃). ¹³C NMR (125.7MHz, CDCl₃): 158.1 (NCHN), 153.2 (NCN), 141.5 (OCHN), 140.6 (NCHN), 38.4 (NCH₃), 33.4 (NCH₃).Anal. Calcd for C₁₂H₁₈FeN₁₂O₂: C, 34.46; H, 4.34; N, 40.19. Found: C, 34.40; H, 4.30; N, 40.13. IR (KBr, cm⁻¹): *v* 1631, 1575, 1465, 1346, 1087, 956, 863, 782, 732, 632, 509.

(c)

Fig 1S ESI-MS spectra for (a) 1, (b) 2 and (c) 3.

Fig 2S. Temperature dependence of the molar paramagnetic susceptibility, χ_M and $\chi_M T$, for microcrystalline samples of 1 and 2.

(a)

(b)

(c)

Fig 3S Cyclic voltammetry curves for a 0.001 M (a) $Bu_4N^+\Gamma$, (b) **1**, (c) **2**, and (d) **3**, in 0.1 M $Bu_4N^+PF_6^-$ acetonitrile solution, recorded at scan rates = 0.1V s⁻¹, T = 25 °C, glassy carbon working electrode.

Compound	1	2	3	4
Formula	C ₁₂ H ₂₀ FeIN ₁₂ O ₃	$C_{26}H_{45}F_{6}FeN_{13}O_{2}P$	$C_{26}H_{39}Co_2I_2N_{25}O_4$	$C_{13}H_{20}FeN_{12}O_2Cl_2$
CCDC no	869061	869062	869060	889218
Formula weight	563.15	772.57	464.69	503.16
T(K)	291(2)	291(2)	291(2)	123(2)
Crystal system	Monoclinic	Triclinic	Monoclinic	Triclinic
Space group	P2(1)/n	<i>P</i> -1	<i>C</i> 2/c	<i>P</i> -1
a (Å)	7.555(3)	11.6055(17)	19.9487(18)	8.6334(12)
<i>b</i> (Å)	25.707(11)	12.6303(13)	12.1594(13)	8.7729(13)
<i>c</i> (Å)	11.485(5)	12.6377(19)	20.182(2)	14.2422(14)
a (°)	90	98.8230(10)	90	78.270(2)
β (°)	93.827(6)	95.409(2)	107.802(3)	74.950(3)
γ (°)	90	97.5500(10)	90	75.447(2)
$V(\text{\AA}^{-3})$	2225.7(16)	1802.2(4)	4661.0(9)	997.2(2)
Ζ	4	2	4	2
$D_{\text{calc.}}$ (g m ⁻³)	1.681	1.424	1.621	1.676
μ (mm ⁻¹)	2.103	0.539	2.096	1.065
F (000)	1116	806	2248	516
θ Range (°)	1.95 to 25.68	1.64 to 26.00	1.99 to 25.35	1.50 to 25.35
Restraints/parameters	0 / 284	0 / 447	0 / 284	0 / 275
Reflections collected	11327	9679	12844	6756

Table 1S. Summary of crystal data and refinement for complexes 1, 2, 3 and 4

Reflections unique	4215	6924	4260	3580
R _{int}	0.0483	0.0258	0.0355	0.0355
Goodness-of-fit on F^2	1.040	1.080	1.034	1.054
$R_1/wR_2 \left[I > 2\sigma(I)\right]$	0.0542 / 0.1384	0.0546 / 0.1030	0.0511 / 0.0945	0.0562 / 0.1171
R_1/wR_2 (all data)	0.0791 / 0.1498	0.0909 / 0.1094	0.0632 / 0.0986	0.0732 / 0.1214
Largest peak and hole (e/Å ³)	1.022 / -0.824	0.611 / -0.393	0.820 / -0.697	0.301 / -0.396

Table 2S. Bond lengths (\AA) and angles $(^{\circ})$ for complex 1

C(1)-N(1)	1.324(9)
C(1)-N(3)	1.355(8)
C(1)-Fe(1)	1.910(7)
C(2)-N(2)	1.293(9)
C(2)-N(3)	1.360(9)
C(3)-N(4)	1.237(9)
C(3)-N(5)	1.354(8)
C(4)-O(1)	1.267(9)
C(4)-N(6)	1.345(9)
C(5)-N(1)	1.493(9)
C(6)-N(6)	1.462(9)
C(7)-N(7)	1.296(9)
C(7)-N(9)	1.384(9)
C(7)-Fe(1)	1.900(7)
C(8)-N(8)	1.323(9)
C(8)-N(9)	1.354(9)
C(9)-N(10)	1.305(9)
C(9)-N(11)	1.319(9)
C(10)-O(2)	1.271(9)
C(10)-N(12)	1.289(9)
C(11)-N(7)	1.467(11)
C(12)-N(12)	1.428(9)
Fe(1)-N(5)	1.877(6)
Fe(1)-N(11)	1.899(6)
Fe(1)-O(1)	2.027(5)
Fe(1)-O(2)	2.034(5)
N(1)-N(2)	1.350(8)
N(3)-N(4)	1.418(8)

N(5)-N(6)	1.392(8)
N(7)-N(8)	1.418(9)
N(9)-N(10)	1.362(8)
N(11)-N(12)	1.428(8)
N(1)-C(1)-N(3)	101.9(6)
N(1)-C(1)-Fe(1)	134.4(5)
N(3)-C(1)-Fe(1)	123.7(5)
N(2)-C(2)-N(3)	107.4(6)
N(4)-C(3)-N(5)	131.4(8)
O(1)-C(4)-N(6)	121.4(6)
N(7)-C(7)-N(9)	103.8(6)
N(7)-C(7)-Fe(1)	135.0(6)
N(9)-C(7)-Fe(1)	121.2(5)
N(8)-C(8)-N(9)	112.6(6)
N(10)-C(9)-N(11)	126.4(7)
O(2)-C(10)-N(12)	122.5(7)
N(5)-Fe(1)-N(11)	169.5(3)
N(5)-Fe(1)-C(7)	99.4(3)
N(11)-Fe(1)-C(7)	87.7(3)
N(5)-Fe(1)-C(1)	87.8(3)
N(11)-Fe(1)-C(1)	99.3(3)
C(7)-Fe(1)-C(1)	94.9(3)
N(5)-Fe(1)-O(1)	81.6(2)
N(11)-Fe(1)-O(1)	91.2(2)
C(7)-Fe(1)-O(1)	86.9(3)
C(1)-Fe(1)-O(1)	169.4(2)
N(5)-Fe(1)-O(2)	91.6(2)
N(11)-Fe(1)-O(2)	81.2(2)
C(7)-Fe(1)-O(2)	168.9(3)
C(1)-Fe(1)-O(2)	87.0(2)
O(1)-Fe(1)-O(2)	93.16(19)
C(1)-N(1)-N(2)	113.1(6)
C(1)-N(1)-C(5)	129.0(6)
N(2)-N(1)-C(5)	117.7(6)
C(2)-N(2)-N(1)	106.3(6)
C(1)-N(3)-C(2)	110.9(6)
C(1)-N(3)-N(4)	129.6(6)
C(2)-N(3)-N(4)	119.6(5)
C(3)-N(4)-N(3)	114.6(6)
C(3)-N(5)-N(6)	118.1(6)
C(3)-N(5)-Fe(1)	126.6(5)
N(6)-N(5)-Fe(1)	113.6(4)
C(4)-N(6)-N(5)	112.6(6)

C(4)-N(6)-C(6)	123.5(6)
N(5)-N(6)-C(6)	123.3(5)
C(7)-N(7)-N(8)	115.0(7)
C(7)-N(7)-C(11)	128.8(7)
N(8)-N(7)-C(11)	116.2(6)
C(8)-N(8)-N(7)	100.6(6)
C(8)-N(9)-N(10)	120.1(6)
C(8)-N(9)-C(7)	107.9(5)
N(10)-N(9)-C(7)	131.9(6)
C(9)-N(10)-N(9)	116.5(6)
C(9)-N(11)-N(12)	117.2(5)
C(9)-N(11)-Fe(1)	128.4(5)
N(12)-N(11)-Fe(1)	111.7(4)
C(10)-N(12)-C(12)	123.7(7)
C(10)-N(12)-N(11)	113.8(6)
C(12)-N(12)-N(11)	122.4(5)
C(4)-O(1)-Fe(1)	109.4(4)
C(10)-O(2)-Fe(1)	108.6(4)

Table 3S.	Bond lengths (Å) and angles (°) for complex 2
C(1)-C(2)	1.511(5)
C(2)-C(3)	1.534(4)
C(3)-C(4)	1.491(4)
C(4)-N(1)	1.482(4)
C(5)-N(3)	1.366(4)
C(5)-N(1)	1.384(4)
C(5)-Fe(1)	1.916(3)
C(6)-N(2)	1.292(4)
C(6)-N(3)	1.373(4)
C(7)-N(4)	1.291(4)
C(7)-N(5)	1.360(4)
C(8)-O(1)	1.302(4)
C(8)-N(6)	1.318(4)
C(9)-N(6)	1.488(4)
C(9)-C(10)	1.538(5)
C(10)-C(11)	1.521(5)
C(11)-C(12)	1.515(5)
C(13)-C(14)	1.538(4)
C(14)-C(15)	1.540(4)
C(15)-C(16)	1.516(5)
C(16)-N(7)	1.457(4)
C(17)-N(7)	1.376(4)

C(17)-N(9)	1.404(4)
C(17)-Fe(1)	1.888(3)
C(18)-N(8)	1.302(4)
C(18)-N(9)	1.395(4)
C(19)-N(11)	1.320(4)
C(19)-N(10)	1.379(4)
C(20)-O(2)	1.240(4)
C(20)-N(12)	1.337(4)
C(21)-N(12)	1.494(4)
C(21)-C(22)	1.506(5)
C(22)-C(23)	1.516(5)
C(23)-C(24)	1.551(5)
C(25)-C(26)	1.470(5)
C(26)-N(13)	1.168(4)
F(1)-P(1)	1.5409(19)
F(2)-P(1)	1.565(2)
F(3)-P(1)	1.6096(19)
F(4)-P(1)	1.526(2)
F(5)-P(1)	1.5953(19)
F(6)-P(1)	1.5238(19)
Fe(1)-N(11)	1.901(3)
Fe(1)-N(5)	1.910(3)
Fe(1)-O(1)	2.013(2)
Fe(1)-O(2)	2.038(2)
N(1)-N(2)	1.391(4)
N(3)-N(4)	1.420(4)
N(5)-N(6)	1.404(4)
N(7)-N(8)	1.397(4)
N(9)-N(10)	1.397(3)
N(11)-N(12)	1.425(3)
C(1)-C(2)-C(3)	116.9(3)
C(4)-C(3)-C(2)	109.2(3)
N(1)-C(4)-C(3)	111.8(3)
N(3)-C(5)-N(1)	101.6(3)
N(3)-C(5)-Fe(1)	124.4(2)
N(1)-C(5)-Fe(1)	134.0(2)
N(2)-C(6)-N(3)	111.8(3)
N(4)-C(7)-N(5)	130.0(3)
O(1)-C(8)-N(6)	122.7(3)
N(6)-C(9)-C(10)	111.4(2)
C(11)-C(10)-C(9)	113.3(3)
C(12)-C(11)-C(10)	121.9(3)
C(13)-C(14)-C(15)	113.7(3)

C(16)-C(15)-C(14)	114.5(3)
N(7)-C(16)-C(15)	113.4(3)
N(7)-C(17)-N(9)	102.4(3)
N(7)-C(17)-Fe(1)	135.2(3)
N(9)-C(17)-Fe(1)	122.4(2)
N(8)-C(18)-N(9)	111.5(3)
N(11)-C(19)-N(10)	123.9(3)
O(2)-C(20)-N(12)	122.2(3)
N(12)-C(21)-C(22)	122.3(3)
C(21)-C(22)-C(23)	117.2(3)
C(22)-C(23)-C(24)	101.4(3)
N(13)-C(26)-C(25)	179.3(4)
C(17)-Fe(1)-N(11)	88.32(13)
C(17)-Fe(1)-N(5)	99.14(13)
N(11)-Fe(1)-N(5)	167.56(11)
C(17)-Fe(1)-C(5)	93.70(14)
N(11)-Fe(1)-C(5)	100.74(13)
N(5)-Fe(1)-C(5)	88.76(13)
C(17)-Fe(1)-O(1)	90.19(12)
N(11)-Fe(1)-O(1)	88.42(10)
N(5)-Fe(1)-O(1)	81.66(10)
C(5)-Fe(1)-O(1)	170.13(12)
C(17)-Fe(1)-O(2)	168.53(12)
N(11)-Fe(1)-O(2)	80.21(10)
N(5)-Fe(1)-O(2)	92.16(10)
C(5)-Fe(1)-O(2)	88.46(11)
O(1)-Fe(1)-O(2)	89.52(9)
C(5)-N(1)-N(2)	113.2(3)
C(5)-N(1)-C(4)	128.6(3)
N(2)-N(1)-C(4)	118.2(2)
C(6)-N(2)-N(1)	103.6(3)
C(5)-N(3)-C(6)	109.8(3)
C(5)-N(3)-N(4)	130.4(3)
C(6)-N(3)-N(4)	119.7(3)
C(7)-N(4)-N(3)	115.4(3)
C(7)-N(5)-N(6)	118.1(3)
C(7)-N(5)-Fe(1)	127.7(2)
N(6)-N(5)-Fe(1)	113.3(2)
C(8)-N(6)-N(5)	112.5(3)
C(8)-N(6)-C(9)	121.7(3)
N(5)-N(6)-C(9)	125.9(3)
C(17)-N(7)-N(8)	113.2(3)
C(17)-N(7)-C(16)	128.8(3)
N(8)-N(7)-C(16)	117.8(2)

C(18)-N(8)-N(7)	104.6(2)
C(18)-N(9)-N(10)	121.2(2)
C(18)-N(9)-C(17)	108.3(2)
N(10)-N(9)-C(17)	130.4(2)
C(19)-N(10)-N(9)	116.3(2)
C(19)-N(11)-N(12)	113.9(3)
C(19)-N(11)-Fe(1)	129.7(2)
N(12)-N(11)-Fe(1)	113.30(19)
C(20)-N(12)-N(11)	111.7(3)
C(20)-N(12)-C(21)	125.2(3)
N(11)-N(12)-C(21)	122.4(2)
C(8)-O(1)-Fe(1)	108.8(2)
C(20)-O(2)-Fe(1)	110.6(2)
F(6)-P(1)-F(4)	91.91(12)
F(6)-P(1)-F(1)	178.26(13)
F(4)-P(1)-F(1)	89.54(11)
F(6)-P(1)-F(2)	90.56(12)
F(4)-P(1)-F(2)	177.50(12)
F(1)-P(1)-F(2)	87.99(12)
F(6)-P(1)-F(5)	87.59(10)
F(4)-P(1)-F(5)	89.21(11)
F(1)-P(1)-F(5)	93.39(11)
F(2)-P(1)-F(5)	90.54(10)
F(6)-P(1)-F(3)	91.06(11)
F(4)-P(1)-F(3)	92.61(11)
F(1)-P(1)-F(3)	87.91(11)
F(2)-P(1)-F(3)	87.71(11)
F(5)-P(1)-F(3)	177.77(11)

 Table 4S.
 Bond lengths (Å) and angles (°) for complex 3

C(1)-N(1)	1.326(5)
C(1)-N(3)	1.350(5)
C(1)-Co(1)	1.899(4)
C(2)-N(2)	1.293(5)
C(2)-N(3)	1.358(5)
C(3)-N(4)	1.292(5)
C(3)-N(5)	1.321(5)
C(4)-O(2)	1.255(5)
C(4)-N(6)	1.317(5)
C(5)-N(6)	1.460(4)
C(6)-N(1)	1.463(5)
C(7)-N(7)	1.333(6)

C(7)-N(9)	1.340(5)
C(7)-Co(1)	1.883(4)
C(8)-N(8)	1.295(5)
C(8)-N(9)	1.338(5)
C(9)-N(10)	1.278(5)
C(9)-N(11)	1.325(5)
C(10)-N(12)	1.298(5)
C(10)-O(1)	1.299(5)
C(11)-N(12)	1.430(5)
C(12)-N(7)	1.472(5)
C(13)-C(14)	1.437(13)
C(14)-N(13)	1.214(12)
Co(1)-N(11)	1.878(3)
Co(1)-N(5)	1.894(3)
Co(1)-O(1)	1.966(3)
Co(1)-O(2)	1.993(3)
N(1)-N(2)	1.420(5)
N(3)-N(4)	1.400(4)
N(5)-N(6)	1.399(4)
N(7)-N(8)	1.371(5)
N(9)-N(10)	1.413(5)
N(11)-N(12)	1.443(4)
N(13)-N(13)#1	1.820(17)
N(1)-C(1)-N(3)	104.9(3)
N(1)-C(1)-Co(1)	133.3(3)
N(3)-C(1)-Co(1)	121.8(3)
N(2)-C(2)-N(3)	111.4(3)
N(4)-C(3)-N(5)	128.8(3)
O(2)-C(4)-N(6)	121.2(3)
N(7)-C(7)-N(9)	103.2(3)
N(7)-C(7)-Co(1)	134.2(3)
N(9)-C(7)-Co(1)	122.5(3)
N(8)-C(8)-N(9)	110.6(4)
N(10)-C(9)-N(11)	127.1(4)
N(13)-C(14)-C(13)	179.4(9)
N(11)-Co(1)-C(7)	88.73(15)
N(11)-Co(1)-N(5)	169.12(14)
C(7)-Co(1)-N(5)	97.73(15)
N(11)-Co(1)-C(1)	98.14(16)
C(7)-Co(1)-C(1)	92.86(18)
N(5)-Co(1)-C(1)	90.30(15)
N(11)-Co(1)-O(1)	83.15(12)
	171.02(1.4)

N(5)-Co(1)-O(1)	90.14(12)
C(1)-Co(1)-O(1)	89.26(14)
N(11)-Co(1)-O(2)	89.08(13)
C(7)-Co(1)-O(2)	89.82(15)
N(5)-Co(1)-O(2)	82.23(11)
C(1)-Co(1)-O(2)	172.34(13)
O(1)-Co(1)-O(2)	89.08(11)
C(1)-N(1)-N(2)	111.2(3)
C(1)-N(1)-C(6)	130.7(3)
N(2)-N(1)-C(6)	117.5(3)
C(2)-N(2)-N(1)	103.4(3)
C(1)-N(3)-C(2)	108.8(3)
C(1)-N(3)-N(4)	132.9(3)
C(2)-N(3)-N(4)	118.1(3)
C(3)-N(4)-N(3)	115.5(3)
C(3)-N(5)-N(6)	118.0(3)
C(3)-N(5)-Co(1)	128.3(3)
N(6)-N(5)-Co(1)	111.5(2)
C(4)-N(6)-N(5)	114.6(3)
C(4)-N(6)-C(5)	122.9(3)
N(5)-N(6)-C(5)	122.6(3)
C(7)-N(7)-N(8)	112.5(3)
C(7)-N(7)-C(12)	129.4(3)
N(8)-N(7)-C(12)	118.1(3)
C(8)-N(8)-N(7)	103.8(3)
C(8)-N(9)-C(7)	109.8(3)
C(8)-N(9)-N(10)	119.9(3)
C(7)-N(9)-N(10)	130.3(3)
C(9)-N(10)-N(9)	116.0(3)
C(9)-N(11)-N(12)	116.9(3)
C(9)-N(11)-Co(1)	127.6(3)
N(12)-N(11)-Co(1)	111.3(2)
C(10)-N(12)-C(11)	124.0(3)
C(10)-N(12)-N(11)	113.7(3)
C(11)-N(12)-N(11)	122.2(3)
C(14)-N(13)-N(13)#1	150.2(6)
C(10)-O(1)-Co(1)	110.5(2)
C(4)-O(2)-Co(1)	110.5(2)

Symmetry transformations used to generate equivalent atoms: #1: -x+1, y, -z+3/2

Table 5S.	Bond lengths (Å) and angles (°) for complex 4
C(1)-N(1)	1.372(5)
C(1)-N(3)	1.390(5)

C(1)-Fe(1)	1.888(4)
C(2)-N(2)	1.333(5)
C(2)-N(3)	1.394(5)
C(3)-N(4)	1.329(5)
C(3)-N(5)	1.346(5)
C(4)-O(1)	1.227(5)
C(4)-N(6)	1.323(5)
C(5)-N(6)	1.458(5)
C(6)-N(1)	1.458(5)
C(7)-N(7)	1.356(6)
C(7)-N(9)	1.379(6)
C(7)-Fe(1)	1.918(5)
C(8)-N(8)	1.304(5)
C(8)-N(9)	1.382(5)
C(9)-N(10)	1.332(5)
C(9)-N(11)	1.366(6)
C(10)-O(2)	1.236(5)
C(10)-N(12)	1.353(6)
C(11)-N(12)	1.436(5)
C(12)-N(7)	1.454(5)
C(13)-Cl(2)	1.661(5)
C(13)-Cl(1)	1.757(4)
Fe(1)-N(11)	1.931(3)
Fe(1)-N(5)	1.934(4)
Fe(1)-O(1)	2.020(3)
Fe(1)-O(2)	2.060(3)
N(1)-N(2)	1.394(5)
N(3)-N(4)	1.398(5)
N(5)-N(6)	1.426(5)
N(7)-N(8)	1.405(5)
N(9)-N(10)	1.406(5)
N(11)-N(12)	1.419(5)
N(1)-C(1)-N(3)	100.5(3)
N(1)-C(1)-Fe(1)	134.6(3)
N(3)-C(1)-Fe(1)	125.0(3)
N(2)-C(2)-N(3)	109.8(3)
N(4)-C(3)-N(5)	128.0(4)
O(1)-C(4)-N(6)	123.8(4)
N(7)-C(7)-N(9)	101.4(4)
N(7)-C(7)-Fe(1)	135.6(3)
N(9)-C(7)-Fe(1)	123.0(3)
N(8)-C(8)-N(9)	112.2(4)
N(10)-C(9)-N(11)	126.0(4)

O(2)-C(10)-N(12)	126.1(4)
Cl(2)-C(13)-Cl(1)	115.9(2)
C(1)-Fe(1)-C(7)	91.41(19)
C(1)-Fe(1)-N(11)	101.72(15)
C(7)-Fe(1)-N(11)	89.97(17)
C(1)-Fe(1)-N(5)	88.47(15)
C(7)-Fe(1)-N(5)	100.36(18)
N(11)-Fe(1)-N(5)	165.36(15)
C(1)-Fe(1)-O(1)	169.44(14)
C(7)-Fe(1)-O(1)	93.07(16)
N(11)-Fe(1)-O(1)	87.85(13)
N(5)-Fe(1)-O(1)	81.31(13)
C(1)-Fe(1)-O(2)	93.62(14)
C(7)-Fe(1)-O(2)	170.29(17)
N(11)-Fe(1)-O(2)	80.89(13)
N(5)-Fe(1)-O(2)	88.07(13)
O(1)-Fe(1)-O(2)	83.40(11)
C(1)-N(1)-N(2)	115.6(3)
C(1)-N(1)-C(6)	126.5(3)
N(2)-N(1)-C(6)	116.9(3)
C(2)-N(2)-N(1)	103.1(3)
C(1)-N(3)-C(2)	110.9(3)
C(1)-N(3)-N(4)	132.7(3)
C(2)-N(3)-N(4)	116.4(3)
C(3)-N(4)-N(3)	114.5(3)
C(3)-N(5)-N(6)	116.7(3)
C(3)-N(5)-Fe(1)	130.6(3)
N(6)-N(5)-Fe(1)	111.3(3)
C(4)-N(6)-N(5)	112.8(3)
C(4)-N(6)-C(5)	126.1(4)
N(5)-N(6)-C(5)	121.1(3)
C(7)-N(7)-N(8)	115.2(3)
C(7)-N(7)-C(12)	127.1(4)
N(8)-N(7)-C(12)	117.3(3)
C(8)-N(8)-N(7)	101.9(3)
C(7)-N(9)-C(8)	109.2(3)
C(7)-N(9)-N(10)	133.1(4)
C(8)-N(9)-N(10)	117.6(3)
C(9)-N(10)-N(9)	116.7(4)
C(9)-N(11)-N(12)	114.3(3)
C(9)-N(11)-Fe(1)	130.4(3)
N(12)-N(11)-Fe(1)	114.1(2)
C(10)-N(12)-N(11)	110.1(3)
C(10)-N(12)-C(11)	125.1(4)

N(11)-N(12)-C(11)	124.8(3)
C(4)-O(1)-Fe(1)	110.6(3)
C(10)-O(2)-Fe(1)	108.6(3)

1. M. Poyatos, W. McNamara, C. Incarvito, E. Peris and R. H. Crabtree, *Chem. Commun.*, 2007, 2267-2269.