Electronic Supplementary Information

Potassium caffeate/caffeic acid co-crystal: the rat race between cathecolic and carboxylic moiety in an atypical hybrid co-crystal

Giuseppe M. Lombardo^a, Gustavo Portalone^b, Ugo Chiacchio^a, Antonio Rescifina^{a*} and Francesco

Punzo^{a*}

^a Dipartimento di Scienze del Farmaco, Università degli Studi di Catania, Viale Andrea Doria 6, 95125, Catania, Italy

^b Dipartimento di Chimica, "Sapienza" Università degli Studi di Roma, P.le A. Moro 5, 00185, Roma, Italy

X-ray single crystal data:

C₁₈H₁₅KO₈·H₂O, M_r = 416,42 triclinic, P-1, a = 9.7482(7) Å, b = 10.2754(9) Å, c = 10.5529(9) Å, α = 114.473(8)°, β = 108.182(7)°, γ = 95.313(7)°, V = 883.45(16) (Å³), Z = 2, ρ = 1.565 mg M⁻³, μ = 0.353 mm⁻¹, λ = 0.71069 Å, T = 298(2) K, F(000) = 432, crystal size = 0.20 × 0.15 × 0.12 mm, 6402 reflections collected, 3084 reflections unique (R_{int} = 0.032), GoF = 1.037, $R[F^2 > 2\sigma(F^2)]$ = 0.051, $wR(F^2)$ = 0.121, min/max residual density = -0.25/0.34 e Å⁻³. Completeness to θ (25.1°) = 0.985.

Table ST1 Molecular Dynamics Average values and estimated standard deviations (e.s.d.) attained
by Model I and II from NPT simulation at 293 K of the Total, Potential and Kinetic Energies (kcal
<i>mol</i> ⁻¹), and Shannon Entropy for and relative differences $\Delta = E(\mathbf{II}) - E(\mathbf{I})$

	Model I		Mode	Model II		Δ	
		e.s.d.		e.s.d.		e.s.d.	
E _{Tot}	-7052.350	4.769	-7094.935	4.706	-42.585	6.700	
E _{Pot}	-7679.954	14.115	-7722.556	14.099	-42.602	19.950	
E _{Kin}	627.604	13.641	627.621	13.652	0.015	19.299	
Entropy	1467.53	360.83	1390.82	372.79	-76.72	518.68	

Table ST2 Estimated standard deviation (e.s.d.) of the adps of model I and II with respect to X-ray ones

	$C1 \rightarrow O4$	H2 → H41	C1A → O4A	H2A → H4A1	H_2O	K
Model I	0.0123	0.0284	0.0073	0.0239	0.0259	0.0162
Model II	0.0166	0.0283	0.0139	0.0157	0.0366	0.0275

Fig. SF1 X-ray structure (left) and model II one (right) unit cell.

Figure SF2 Superimposition of the asymmetric unit of the X-ray structure (orange) and model **II** (light blue). The position of the K ion is coincident and therefore resulted eclipsed.

Figure SF3 Superimposition of the experimental crystal packing with the model I MD averaged one. The experimental anisotropic thermal factors are shown (yellowish) and compared with the MD calculated ones (in red and gray for oxygen and carbons, respectively). The agreement in the anisotropic thermal factors is extended to the whole MD calculated super-cell and not only confined to the single unit fragment.

Figure SF4 Superimposition of the whole asymmetric units (with displayed hydrogens, at difference with Figure 6 in the text) with the MD averaged ones of model I MD. The experimental anisotropic thermal factors are shown (in red and gray for oxygen and carbons, respectively) and compared with the MD calculated ones (yellowish).

Structure II CIF

data	II						
audi	It crea	tion date		2011-07-	-30		
audi	it crea	tion metho	d				
symn	netry s	pace group	name H-M	'P-1'			
symn	netry I	nt Tables	number	2			
symn	netry c	ell settin	g	triclini	lc		
loop		—					
_symn	netry_e	quiv_pos_a	s_xyz				
x, <u></u>	/ , Z						
-x,	-y,-z						
_cell	L_lengt	h_a		8.1277			
_cell	L_lengt	.h_b		10.1980			
_cell	L_lengt	h_c		10.6385			
_cell	L_angle	_alpha		85.8454			
_cell	L_angle	_beta		80.3161			
_cell	L_angle	gamma		74.8444			
loop_	_						
_aton	n_site_	label					
_aton	n_site_	type_symbo	1				
_aton	n_site_	fract_x					
_aton	n_site_	fract_y					
_aton	n_site_	fract_z					
_aton	n_site_	U_iso_or_e	quiv				
_aton	n_site_	adp_type					
_aton	n_site_	occupancy					
K	K	0.14294	-0.01203	0.63554	0.01276	Uani	1.00
01	0	0.62213	-0.09471	-0.68739	0.02045	Uani	1.00
02	0	0.35784	-0.04405	-0.57173	0.01815	Uani	1.00
H21	H	0.34542	0.02748	-0.63868	0.02069	Uani	1.00
03	0	0.99943	-0.83678	-0.53750	0.01598	Uani	1.00
H31	H	1.09519	-0.81291	-0.59510	0.01925	Uani	1.00
04	0	0.88336	-0.83724	-0.28464	0.02069	Uani	1.00
H41	Н	0.79158	-0.85815	-0.21989	0.02075	Uani	1.00
C1	С	0.51525	-0.12811	-0.60556	0.01330	Uani	1.00
C2	С	0.55310	-0.25630	-0.53665	0.01483	Uani	1.00

U 2	ц	0 46651	0 -0 2640	1 _0 15	221 0	01215	Ilani	1 0 0
пZ	п	0.40032	-0.2040	4 -0.45	521 0.	04245	Uani	1.00
C3	С	0.68902	-0.3598	1 -0.5/	602 0.	01/44	Uanı	1.00
HЗ	Н	0.76471	7 -0.3423	6 -0.66	417 0.	04622	Uani	1.00
C4	С	0.72533	3 -0.4857	2 -0.50	216 0.	01417	Uani	1.00
C.5	С	0.83999	9 -0.6020	3 -0.55	859 0.	01624	Uani	1.00
ч5	ц Ц	0 88813		1 -0 65	789 0	03273	Uani	1 00
n.5 a.c		0.0001		1 0.05	107 0.	01275	Uani	1.00
60	C	0.88996	-0./2II	3 -0.48	49/ 0.	01222	Uani	1.00
С7	С	0.81952	-0.7261	8 -0.35	580 0.	01232	Uani	1.00
C8	С	0.69776	5 -0.6148	5 -0.30	088 0.	01687	Uani	1.00
Н8	Н	0.64480	-0.6218	8 -0.20	247 0.	0.3129	Uani	1.00
C Q	C	0 65159		7 - 0.37	360 0	02001	Uani	1 00
		0.03130		0.37	200 0. C72 0	04001	Uani	1.00
H9	Н	0.56418	3 -0.4104	0 -0.32	6/3 0.	04613	Uani	1.00
01A	0	0.44359	0.1509	0 0.12	166 0.	01512	Uani	1.00
02A	0	0.26171	0.1751	5 0.29	475 0.	02264	Uani	1.00
03A	0	0.32043	3 0.8044	5 -0.23	990 0.	01526	Uani	1.00
ц 3 л 1	ч	0 3921	5 0 8/66	8 _0 19	815 O	01032	Ilani	1 00
IIJAI 047		0.5921	0.0400	-0.19	400	01932	Uani	1.00
04A	0	0.0119.	L 0.94/9.	3 -0.13	426 0.	02308	Uani	1.00
H4A1	Н	-0.10905	5 0.9861	7 -0.10	000 0.	02109	Uani	1.00
C1A	С	0.31434	0.2207	6 0.18	888 0.	01269	Uani	1.00
C2A	С	0.23139	0.3568	4 0.14	966 0.	01472	Uani	1.00
u2л	ц Ц	0 12580		5 0 21	375 O	03830	Uani	1 00
112A 0.27	11 Q	0.1250.			575 O.	0157	Uani -	1.00
C3A	C	0.28696	0.4154	3 0.03	904 0.	01579	Uanı	1.00
НЗА	Н	0.39552	2 0.3530	9 -0.01	880 0.	03725	Uani	1.00
C4A	С	0.20775	5 0.5538	1 0.00	237 0.	01396	Uani	1.00
C5A	С	0.29399	0.6116	3 -0.10	268 0.	02234	Uani	1.00
ч5л	ч	0 /1313	R 0 55/6	8 -0 1/	931 O	05212	Ilani	1 00
nja acī	11 Q	0.41313			JJI 0.	01212	Uani -	1.00
С6А	C	0.22820	0./44/	4 -0.14	432 0.	01320	Uani	1.00
C7A	С	0.07100	5 0.8219	7 -0.08	360 0.	01177	Uani	1.00
C8A	С	-0.01573	3 0.7681	0 0.02	420 0.	01513	Uani	1.00
H8A	Н	-0.13299	0.8288	0.07	426 0.	03114	Uani	1.00
CGA	C	0 05171	0 6338	9 0 06	650 0	01553	Ilani	1 00
		0.00101		5 0.00	CO1 0	01000	Uani	1 00
пуА	п	-0.02193	0.5959	0.14	021 0.	03339	Uani	1.00
05	0	0.67563	3 0.0726	1 -0.09	641 0.	01753	Uanı	1.00
H52	Н	0.62393	3 0.0016	5 -0.11	729 0.	02296	Uani	1.00
Н51	Н	0.59558	0.1064	4 -0.01	963 0.	02185	Uani	1.00
1000								
	cito	anico lak						
atom	_site	_aniso_U						
_atom	_site	_aniso_U_2	22					
atom	site	aniso U 3	33					
atom	site	aniso U 1	12					
atom	site	aniso II	3					
			10					
	_sile		20 01050					
K		0.01205	0.01053	0.01252	0.001	10 -0	.00015	0.00169
01		0.01640	0.01662	0.02478	-0.003	37 0	.00298	0.00506
02		0.01637	0.01447	0.01684	0.003	39 0	.00217	0.00556
Н21		0.02037	0.01493	0.01919	0.003	47 0	.00241	0.00670
03		0 01581	0 00943	0 01766	0 000	34 0	00597	-0 00067
1121		0.01001	0.00040	0.01/00	0.000		.000007	0.00007
HJI		0.01632	0.0144/	0.02026	0.000	9/ 0	.00/41	0.00127
04		0.01749	0.01622	0.01811	0.006	71 0	.00533	0.00681
H41		0.02073	0.01544	0.01885	0.001	50 0	.00517	0.00492
C1		0.01277	0.00996	0.01480	-0.000	49 -0	.00027	0.00181
C2		0 01381	0 01118	0 01554	0 001	36 0	00028	0 00273
110		0 02062	0 02020	0 02220	0.0017	40 0	01000	0.01704
п <i>2</i>		0.03003	0.03030	0.03220	0.017	40 0	.01000	0.01/94
C3		0.019/8	0.01115	0.01542	0.002	83 0	.00226	0.0019/
HЗ		0.05445	0.02489	0.03174	0.015	87 0	.02360	0.01218
C4		0.01625	0.00983	0.01225	0.002	29 0	.00038	0.00016
C.5		0.01880	0.01093	0.01305	0 002	62 N	.00342	0.00094
ц5		0 04224	0 02226	0 01005	0 007	76 0	01170	0 00/10
11.5		0.04224	0.02220	0.01005	0.007		. UII/U	0.00419
Сb		0.01191	0.00866	0.01284	0.000	3/ 0	.00233	-0.00013
С7		0.01132	0.00996	0.01199	0.001	71 0	.00105	0.00072
C8		0.02012	0.01323	0.01049	0.005	49 0	.00101	-0.00007
Н8		0.04058	0.02446	0.01288	0.012	58 0	.00612	0.00234

С9	0.02653	0.01304	0.01144	0.00780	0.00179	-0.00019
Н9	0.06738	0.02466	0.01778	0.02625	0.01143	0.00310
01A	0.01508	0.01158	0.01526	-0.00051	0.00236	0.00044
02A	0.02148	0.01473	0.02100	0.00411	0.00893	0.00863
O3A	0.01190	0.01431	0.01578	0.00006	0.00081	0.00494
H3A1	0.01363	0.01969	0.02260	-0.00305	-0.00094	0.00402
O4A	0.01942	0.01657	0.02180	0.00683	0.00668	0.00881
H4A1	0.01744	0.01475	0.02284	0.00482	0.00401	0.00365
C1A	0.01167	0.00961	0.01405	-0.00081	0.00128	0.00296
C2A	0.01304	0.01091	0.01678	-0.00049	0.00107	0.00464
H2A	0.03258	0.02355	0.03722	0.01182	0.01873	0.01501
C3A	0.01709	0.01080	0.01537	0.00010	0.00127	0.00403
HЗA	0.04188	0.02034	0.02882	0.01155	0.01685	0.01019
C4A	0.01322	0.01059	0.01489	-0.00029	0.00066	0.00369
C5A	0.01824	0.01410	0.02392	0.00503	0.00830	0.00881
H5A	0.03974	0.02835	0.05458	0.01968	0.03134	0.02347
C6A	0.01118	0.01121	0.01456	0.00078	0.00095	0.00377
C7A	0.01081	0.01018	0.01199	0.00015	-0.00059	0.00162
C8A	0.01336	0.01300	0.01480	0.00064	0.00200	0.00261
H8A	0.02504	0.02314	0.03003	0.00779	0.01294	0.00673
C9A	0.01387	0.01312	0.01574	-0.00041	0.00183	0.00391
H9A	0.02765	0.02468	0.03289	0.00471	0.01445	0.01389
05	0.01431	0.01547	0.02013	-0.00331	0.00387	0.00002
Н52	0.02205	0.02068	0.02562	-0.00790	0.00275	-0.00315
Н51	0.01963	0.02075	0.02178	-0.00377	0.00520	-0.00326
loop						

_geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag

geom	oona_pub.	I_IIA9		
01	C1	1.219	•	?
02	H21	0.980	•	?
02	C1	1.348	•	?
03	Н31	0.979	•	?
03	C6	1.369	•	?
04	H41	0.983	•	?
04	C7	1.351	•	?
C1	C2	1.438	•	?
C2	H2	1.049	•	?
C2	С3	1.345	•	?
C3	HЗ	1.063	•	?
C3	C4	1.445	•	?
C4	C5	1.405	•	?
C4	С9	1.405	•	?
C5	Н5	1.064	•	?
C5	C6	1.402	•	?
C6	С7	1.400	•	?
C7	C8	1.387	•	?
C8	Н8	1.068	•	?
C8	С9	1.398	•	?
С9	Н9	1.058	•	?
01A	C1A	1.246	•	?
02A	C1A	1.239	•	?
O3A	H3A1	0.984	•	?
O3A	C6A	1.363	•	?
O4A	H4A1	0.975	•	?
O4A	C7A	1.355	•	?
ClA	C2A	1.441	•	?
C2A	H2A	1.053		?
C2A	C3A	1.344		?
C3A	НЗА	1.069	•	?
C3A	C4A	1.445		?

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is The Royal Society of Chemistry 2012

C4A	C5A	1.395		?
C4A	C9A	1.410		?
C5A	H5A	1.052		?
C5A	C6A	1.392		?
C6A	C7A	1.393		?
C7A	C8A	1.398	•	?
C8A	H8A	1.069	•	?
C8A	C9A	1.406	•	?
C9A	H9A	1.063	•	?
05	Н52	0.981	•	?
05	H51	0.977		?