Temperature-/Solvent-DependentLow-dimensionalCompoundsBased on Quinoline-2,3-dicarboxylic Acid:Structures and Fluorescent Properties

Ming-Fang Wang,^a Xu-Jia Hong,^a Qing-Guang Zhan,^a Yi-Ting Liu,^a Hong-Guang Jin,^a Zhi-Peng Zheng,^a Shi-Hai Xu^b and Yue-Peng Cai,*^a

^aSchool of Chemistry and Environment, South China Normal University; Key Laboratory of the energy conversion and energy storage materials,, Guangzhou 510006, P. R. China. Fax: 86-020-39310; Tel: 86-020-39310383; E-mail: <u>caiyp@scnu.edu.cn</u>

^bDepartment of Chemistry, Jinan University, Guangzhou 510632. E-mail: <u>txush@jnu.edu.cn</u>

Contents

- 1. Table S1 Crystal data and structure refinement of eight compounds 1-6 and 8-9.
- 2. Table S2 The selected bond lengths and angles for compounds 1-6 and 8-9.
- 3. Table S3 Distances (Å) and angles (°) of hydrogen bonds for compounds 1-6 and 8-9.
- 4. Figure S1 The thermal analyses (N2) of the crystalline 1-4 (TG curves).
- 5. Figure S2 X-ray powder diffraction patterns of simulated (*a*) and as prepared complex

(*b*) for compounds 1, 2, 3 and 9.

	1	2	3	4
Chemical formula	$C_{22}H_{16}N_2O_{10}Co$	$C_{20}H_{12}N_2O_4Co$	$C_{26}H_{24}N_2O_{10}Co$	$C_{22}H_{16}N_2O_{10}Zn$
M	527.30	403.25	583.40	533.76
Crystal system	Triclinic	Monoclinic	Monoclinic	Triclinic
Space group	<i>P</i> -1	C2/c	<i>P</i> 2(1)/ <i>c</i>	<i>P</i> -1
a /Å	7.3968(14)	28.867(4)	13.090(5)	7.4062(17)
b/Å	9.1349(18)	8.0358(12)	7.694(3)	9.136(2)
c /Å	9.410(3)	15.211(2)	12.632(5)	9.415(3)
α /°	110.547(4)	90	90	110.466(4)
β /°	98.240(4)	114.151(2)	97.422(6)	98.320(4)
$\gamma/^{\circ}$	111.630(2)	90	90	111.664(3)
$V/Å^3$	525.6(2)	3219.7(8)	1261.6(8)	526.6(2)
Ζ	1	8	2	1
T/K	298(2)	298(2)	298(2)	298(2)
<i>F</i> (000)	269	1640	602	272
$D_{\rm calcd}$ / g cm ⁻³	1.666	1.664	1.536	1.683
μ /mm ⁻¹	0.882	1.097	0.743	1.232
λ /Å	0.71073	0.71073	0.71073	0.71073
R _{int}	0.0410	0.0436	0.0792	0.0250
data/restraint/parm	2735/0/161	2890 / 0 / 244	2270 / 0 / 183	1861 / 3 / 165
GOF	1.062	1.041	1.011	1.044
$R_1 \left[I = 2\sigma(I)\right]^a$	0.0645	0.0388	0.0571	0.0544
$wR_2 \left[I = 2\sigma(I)\right]^b$	0.1143	0.0827	0.0985	0.1362

Table S1

 $\overline{{}^{a}R_{1}=\Sigma||F_{o}|-|F_{c}||/|F_{o}|, {}^{b}wR_{2}=[\Sigma w(F_{o}^{2}-F_{c}^{2})^{2}/\Sigma w(F_{o}^{2})^{2}]^{1/2}, \text{ where } w=1/[\sigma^{2}(F_{o}^{2})+(aP)_{2}+bP]. P=(F_{o}^{2}+2F_{c}^{2})/3.$

	5	6	8	9
Chemical formula	$C_{20}H_{12}N_2O_4Zn$	$C_{26}H_{24}N_2O_{10}Zn$	$C_{20}H_{12}N_2O_4Cd$	C ₁₂ H ₈ NO ₄ ClCd
М	409.69	589.84	456.72	378.04
Crystal system	Monoclinic	Monoclinic	Monoclinic	Monoclinic
Space group	C2/c	P2(1)/c	C2/c	C2/c
<i>a</i> /Å	29.004(9)	12.984(8)	28.777(8)	15.433(9)
b /Å	8.040(3)	7.731(5)	8.059(2)	18.004(10)
c/Å	15.251(5)	12.571(8)	15.281(4)	9.215(5)
α /°	90	90	90	90
eta /°	114.337(4)	97.320(7)	114.007(4)	91.158(8)
$\gamma/^{\circ}$	90	90	90	90
V/Å ³	3240.3(18)	1251.7(13)	3237.4(15)	2560(2)
Ζ	8	2	8	8
T/K	298 (2)	298(2)	298(2)	298(2)
<i>F</i> (000)	1664	608	1808	1472
$D_{\rm calcd}$ / g cm ⁻³	1.680	1.565	1.874	1.962
μ /mm ⁻¹	1.547	1.045	1.381	1.922
$\lambda/\text{\AA}$	0.71073	0.71073	0.71073	0.71073
R _{int}	0.0872	0.0705	0.0646	0.1551
data/restraint/parm	2921 / 0 / 244	2248 / 0 / 163	2918 / 24 / 244	2312 / 0 / 174
GOF	1.043	1.093	1.062	0.953
$R_1 \left[I = 2\sigma(I)\right]^a$	0.0555	0.0677	0.0657	0.0788
$wR_2 \left[I = 2\sigma(I)\right]^b$	0.1109	0.1368	0.1512	0.1047

 ${}^{a}R_{1} = \Sigma ||F_{o}| - |F_{c}||/|F_{o}|, {}^{b}wR_{2} = [\Sigma w(F_{o}^{2} - F_{c}^{2})^{2}/\Sigma w(F_{o}^{2})^{2}]^{1/2}, \text{ where } w = 1/[\sigma^{2}(F_{o}^{2}) + (aP)_{2} + bP]. P = (F_{o}^{2} + 2F_{c}^{2})/3.$

		omplex 1		
Co(1)-O(2)#1	2 027(3)	Co(1)-O(3)#1	2 093(3)	
Co(1)-O(2)	2.027(3)	Co(1)-N(1)#1	2.228(4)	
Co(1)-O(3)	2.093(3)	Co(1)-N(1)	2.228(4)	
O(2)#1-Co(1)-O(2)	180.00(14)	O(3)-Co(1)-N(1)#1	88.96(14)	
O(2)#1-Co(1)-O(3)	90.32(14)	$O(3)$ #1- $C_0(1)$ - $N(1)$ #1	91.04(14)	
O(2)-Co(1)-O(3)	89.68(14)	O(2)#1-Co(1)-N(1)	105.35(14)	
O(2)#1-Co(1)-O(3)#1	89.68(14)	O(2)-Co(1)-N(1)	74.65(14)	
O(2)-Co(1)-O(3)#1	90.32(14)	O(3)-Co(1)-N(1)	91.04(14)	
O(2)#1-Co(1)-N(1)#1	74.65(14)	O(3)#1-Co(1)-N(1)	88.96(14)	
O(2)-Co(1)-N(1)#1	105.35(14)			
	Cc	omplex 2		
Co(1)-O(3)	1.936(2)	O(3)-Co(1)-N(1)	101.08(10)	
Co(1)-O(2)#2	1.977(2)	O(2)#2-Co(1)-N(1)	100.07(9)	
Co(1)-N(1)	2.085(2)	O(3)-Co(1)-N(2)#3	108.68(10)	
Co(1)-N(2)#3	2.103(2)	O(2)#2-Co(1)-N(2)#3	100.19(9)	
O(3)-Co(1)-O(2)#2	139.90(10)	N(1)-Co(1)-N(2)#3	100.91(9)	
Complex 3				
Co(1)-O(1)#4	2.008(3)	Co(1)-O(3)	2.125(4)	
Co(1)-O(1)	2.008(3)	Co(1)-N(1)	2.218(4)	
Co(1)-O(3)#4	2.125(4)	Co(1)-N(1)#4	2.218(4)	
O(1)#4-Co(1)-O(1)	180.0	O(3)#4-Co(1)-N(1)	91.62(14)	
O(1)#4-Co(1)-O(3)#4	89.00(16)	O(3)-Co(1)-N(1)	88.38(14)	
O(1)-Co(1)-O(3)#4	91.00(16)	O(1)#4-Co(1)-N(1)#4	79.01(13)	
O(1)#4-Co(1)-O(3)	91.00(16)	O(1)-Co(1)-N(1)#4	100.99(13)	
O(1)-Co(1)-O(3)	89.00(16)	O(3)#4-Co(1)-N(1)#4	88.38(14)	
O(1)#4-Co(1)-N(1)	100.99(13)	O(3)-Co(1)-N(1)#4	91.62(14)	
O(1)-Co(1)-N(1)	79.01(13)	O(3)#4-Co(1)-N(1)	91.62(14)	
	Сс	omplex 4		
Zn(1)-O(2)#1	2.031(3)	Zn(1)-O(3)	2.093(3)	

Table S2. Bond lengths (Å) and angles (°) for complexes 1-6 and 8-9

Zn(1)-O(2)	2.031(3)	Zn(1)-N(1)#1	2.221(3)	
Zn(1)-O(3)#1	2.093(3)	Zn(1)-N(1)	2.221(3)	
O(2)#1-Zn(1)-O(3)#1	89.76(14)	O(3)#1-Zn(1)-N(1)#1	90.74(13)	
O(2)-Zn(1)-O(3)#1	90.24(14)	O(3)-Zn(1)-N(1)#1	89.26(13)	
O(2)#1-Zn(1)-O(3)	90.24(14)	O(2)#1-Zn(1)-N(1)	104.76(13)	
O(2)-Zn(1)-O(3)	89.76(14)	O(2)-Zn(1)-N(1)	75.24(13)	
O(3)#1-Zn(1)-O(3)	180.00(9)	O(3)#1-Zn(1)-N(1)	89.26(13)	
O(2)#1-Zn(1)-N(1)#1	75.24(13)	O(3)-Zn(1)-N(1)	90.74(13)	
O(2)-Zn(1)-N(1)#1	104.76(13)			
	Co	mplex 5		
Zn(1)-O(2)#2	1.920(4)	Zn(1)-N(2)	2.101(4)	
Zn(1)-O(4)#3	1.958(4)	Zn(1)-N(1)	2.103(4)	
O(2)#2-Zn(1)-O(4)#3	138.55(18)	O(2)#2-Zn(1)-N(1)	110.13(17)	
O(2)#2-Zn(1)-N(2)	100.16(17)	O(4)#3-Zn(1)-N(1)	100.53(17)	
O(4)#3-Zn(1)-N(2)	100.54(17)	N(2)-Zn(1)-N(1)	101.11(18)	
Complex 6				
N(1)-Zn(1)	2.171(2)	Zn(1)-O(3)#4	2.101(3)	
Zn(1)-O(1)#4	2.000(3)	Zn(1)-O(3)	2.101(3)	
Zn(1)-O(1)	2.000(3)	Zn(1)-N(1)#4	2.171(2)	
O(1)#4-Zn(1)-N(1)	99.69(9)	O(3)#4-Zn(1)-N(1)	91.72(10)	
O(1)-Zn(1)-N(1)	80.31(9)	O(3)-Zn(1)-N(1)	88.28(10)	
O(1)-Zn(1)-O(3)#4	91.74(13)	O(1)-Zn(1)-N(1)#4	99.69(16)	
O(1)#4-Zn(1)-O(3)	91.74(13)	O(3)#4-Zn(1)-N(1)#4	88.28(19)	
O(1)-Zn(1)-O(3)	88.26(13)	O(3)-Zn(1)-N(1)#4	91.72(19)	
	Co	omplex 8		
Cd(1)-O(4)#2	1.939(7)	N(2)-Cd(1)-O(2)#3	91.1(3)	
Cd(1)-O(1)#3	1.992(7)	N(1)-Cd(1)-O(2)#3	153.9(3)	
Cd(1)-N(2)	2.136(7)	O(4)#2-Cd(1)-C(3)#3	122.6(3)	
Cd(1)-N(1)	2.153(7)	O(1)#3-Cd(1)-C(3)#3	29.0(3)	
Cd(1)-O(2)#3	2.582(7)	N(2)-Cd(1)-C(3)#3	94.9(3)	
N(2)-Cd(1)-N(1)	99.4(3)	N(1)-Cd(1)-C(13)#2	95.8(3)	

O(4)#2-Cd(1)-O(2)#3	99.4(3)	O(2)#3-Cd(1)-C(13)#2	94.0(3)
O(1)#3-Cd(1)-O(2)#3	56.1(3)	N(2)-Cd(1)-O(2)#3	91.1(3)
		Complex 9	
Cd(1)-O(4)	2.300(11)	Cd(1)-O(4)#5	2.472(11)
Cd(1)-O(3)#5	2.373(11)	Cd(1)-Cl(1)	2.519(4)
Cd(1)-N(1)	2.395(8)	Cd(1)-Cl(1)#6	2.581(4)
O(4)-Cd(1)-O(3)#5	98.8(4)	O(3)#5-Cd(1)-Cl(1)#6	88.9(3)
O(4)-Cd(1)-N(1)	72.2(4)	N(1)-Cd(1)-Cl(1)#6	164.3(4)
O(3)#5-Cd(1)-N(1)	87.6(3)	O(4)#5-Cd(1)-Cl(1)#6	96.0(3)
O(4)-Cd(1)-O(4)#5	151.2(5)	Cl(1)-Cd(1)-Cl(1)#6	91.08(14)
O(3)#5-Cd(1)-O(4)#5	54.2(4)	O(4)-Cd(1)-C(7)#5	126.0(5)
N(1)-Cd(1)-O(4)#5	94.4(4)	O(3)#5-Cd(1)-C(7)#5	27.7(4)
O(4)-Cd(1)-Cl(1)	106.0(3)	N(1)-Cd(1)-C(7)#5	91.5(4)
O(3)#5-Cd(1)-Cl(1)	155.1(3)	O(4)#5-Cd(1)-C(7)#5	26.5(4)
N(1)-Cd(1)-Cl(1)	98.5(2)	Cl(1)-Cd(1)-C(7)#5	127.5(5)
O(4)#5-Cd(1)-Cl(1)	101.1(3)	Cl(1)#6-Cd(1)-C(7)#5	92.6(4)
O(4)-Cd(1)-Cl(1)#6	93.3(3)		

*Symmetry transformations used to generate equivalent atoms: #1 -x+1,-y,-z+1; #2 x,-y+1,z+1/2; #3 x,y-1,z; #4 -x+1,-y+1,-z+1; #5 x,-y,z-1/2; #6 -x,-y,-z+1.

D-H···A	d(H···A)	$d(D \cdots A)$	∠D-H…A
		1	
O3-H3B…O4#1	1.871	2.777(5)	164.7(5)
O3-H3B…O5#2	2.032	2.735(5)	131.2(4)
O4-H4…O1	1.564	2.383(5)	175.4(6)
С10-Н10…О2	2.274	3.071(5)	143.5(5)
		3	
O3-H3…O2#3	2.041(6)	2.708(5)	168.1(7)
C11-H11…O1	2.254(5)	3.115(6)	153.7(6)
		4	
O3-H3B…O4#1	1.868	2.773(5)	164.7(5)
O3-H3B…O5#2	2.030	2.732(5)	131.2(4)
O4-H4…O1	1.548	2.380(5)	175.4(6)
С10-Н10…О2	2.269	3.063(5)	143.0(5)
		6	
O3-H3···O2#3	1.982(5)	2.710(4)	134.4(5)
C11-H11…O1	2.189(5)	3.041(5)	151.9(5)

Table S3 Distances (Å) and angles (°) of hydrogen bonds for compounds 1-6 and 8-9.

*Symmetry transformation used to generate equivalent atoms: #1 -x+1,-y+1,-z+1; #2 x-1,y-1,z; #3 -x+1,y+1/2,-z+1/2.

(a) Complex 1

(c) Complex 3

(d) Complex 9

Figure S2 X-ray powder diffraction patterns of simulated (a) and as prepared complex (b)

(1) for 1.

