Electronic supplementary information (ESI) (11 pages)

¹³C and ¹H NMR spectroscopic investigation on the structure of the iminium ion with a dipolar form in metal complexes of 2-N substituted N-confused porphyrins

Wen- Pin Chang, ^a Wen-Chain Lin, ^a Jyh-Horung Chen, *^a Shin-Shin Wang, ^b and Jo-Yu Tung^c

^aDepartment of Chemistry, National Chung Hsing University, Taichung 40227, Taiwan. Fax: 886422862547; Tel: 886422840412x612; E-mail: JyhHChen@dragon.nchu.edu.tw
^bMaterial Chemical Laboratories ITRI, Hsin-Chu 300, Taiwan. Tel: 88635732550; E-mail: ShinShinWang@ITRI.org.tw
^cDepartment of Occupational Safety and Health, Chung Hwai University of Medical Technology, Taiwan. Fax: 88662894028; Tel: 88662674567x815; E-mail: joyuting@mail.hwai.edu.tw

Contents

1. Figure S1. Molecular configuration and atom-labeling scheme for (a) 2-NCH₂CH₂CH₂OC₆H₅NCTPPH (**2**) and (b) Ni(2-NCH₂CH₂CH₂OC₆H₅NCTPP) (**7**).

2. Figure S2. Molecular configuration and atom-labeling scheme for (a) Zn(2-NCH₂COOC₂H₅NCTPP)Cl (**4**) and (b) Zn(2-NCH₂COOCH₃NCTPP)Cl (**8**).

3. Figure S3. Molecular configuration and atom-labeling scheme for (a) Pd(2-NCH₂COOC₂H₅NCTPP) (**5**) and (b) Mn(2-NCH₂COOC₂H₅NCTPP)Br (**6**).

4. Figure S4. ¹H NMR spectra for **8** at 599.95 MHz in CDCl₃ at 20°C.

5. The description for the ¹H NMR of H_{β} in **8**.

6. Figure S5. ¹H NMR spectra for **7** at 599.95 MHz in CDCl₃ at 20°C.

7. The description for the ¹H NMR of H_{β} in 7.

8. Figure S6. The UV/vis spectrum of Ni(2-NCH₂CH₂CH₂OC₆H₅NCTPP) (7).

9. Figure S7. The UV/vis spectra of (a) Zn(2-NCH₂COOC₂H₅NCTPP)Cl (**4**) and (b) Zn(2-NCH₂COOCH₃NCTPP)Cl (**8**).

10. Figure S8. The UV/vis spectra of (a) $Pd(2-NCH_2COOC_2H_5NCTPP)$ (5) and (b) $Mn(2-NCH_2COOC_2H_5NCTPP)Br$ (6).

Figure S1. Molecular configuration and atom-labeling scheme for (a) 2-NCH₂CH₂CH₂OC₆H₅NCTPPH (**2**) and (b) Ni(2-NCH₂CH₂CH₂OC₆H₅NCTPP) (**7**), with 30% thermal ellipsoids. Hydrogen atoms are omitted for clarity.

Figure S2. Molecular configuration and atom-labeling scheme for (a) $Zn(2-NCH_2COOC_2H_5NCTPP)Cl$ (4) and (b) $Zn(2-NCH_2COOCH_3NCTPP)Cl$ (8), with 30% thermal ellipsoids. Hydrogen atoms except H(17A) for 4 and 8 are omitted for clarity.

(b) (**6**)

 Figure S3. Molecular configuration and atom-labeling scheme for (a) Pd(2-NCH₂COOC₂H₅NCTPP) (5) and (b) Mn(2-NCH₂COOC₂H₅NCTPP)Br (6), with 30% thermal ellipsoids. Hydrogen atoms are omitted for clarity.

Figure S4. ¹H NMR spectra for 8 at 599.95 MHz in CDCl₃ at 20 °C :
(a) entire spectrum; (b) expansion of the region 7.50-8.30 ppm in (a) showing seven different β-pyrrole protons H_β and phenyl protons (*o*-H, *m*, *p*-H). Chemical shifts are in ppm from CDCl₃ at 7.24 ppm.

The description for the 1H NMR of H_β in 8.

The doublet at 8.30 ppm is assigned to $H_{\beta}(2)$ with ${}^{3}J(H-H) = 4.5$ Hz and the other doublet at 7.76 ppm is due to $H_{\beta}(3)$ with ${}^{3}J(H-H) = 4.5$ Hz. The doublet at 8.19 ppm is assigned to $H_{\beta}(13)$ with ${}^{3}J(H-H) = 4.8$ Hz and the other doublet at 7.78 ppm is due to $H_{\beta}(12)$ with ${}^{3}J(H-H) = 4.8$ Hz. The doublet at 7.69 ppm is assigned to $H_{\beta}(7)$ with ${}^{3}J(H-H) = 5.7$ Hz and the other doublet at 7.62 ppm is due to $H_{\beta}(8)$ with ${}^{3}J(H-H) = 5.7$ Hz.

Figure S5. ¹H NMR spectra of **7** at 599.94 MHz in CDCl₃ at 20 °C (a) entire spectrum; (b) expansion of the region 7.20-8.00 ppm in (a) showing β-pyrrole protons H_β and phenyl protons (*o*-H, *m*, *p*-H)

The description for the ¹H NMR of H_{β} in 7.

The doublet at 7.99 ppm is assigned to $H_{\beta}(2)$ with ${}^{3}J(H-H) = 4.8$ Hz and the other doublet at 7.77 ppm is due to $H_{\beta}(3)$ with ${}^{3}J(H-H) = 4.8$ Hz. The doublet at 7.93 ppm is assigned to $H_{\beta}(7)$ with ${}^{3}J(H-H) = 5.1$ Hz and the other doublet at 7.89 ppm is due to $H_{\beta}(8)$ with ${}^{3}J(H-H) = 5.1$ Hz.

Figure S6. The UV/vis spectrum of Ni(2-NCH₂CH₂CH₂OC₆H₅NCTPP) (7) in CH₂Cl₂ at 20 °C.

Figure S7. The UV/vis spectra of (a) $Zn(2-NCH_2COOC_2H_5NCTPP)Cl$ (4) and (b) $Zn(2-NCH_2COOCH_3NCTPP)Cl$ (8) in CH_2Cl_2 at 20 °C.

Figure S8. The UV/vis spectra of (a) $Pd(2-NCH_2COOC_2H_5NCTPP)$ (5) and (b) Mn(2-NCH₂COOC₂H₅NCTPP)Br (6) in CH₂Cl₂ at 20 °C.