Methylene-bis[(aminomethyl)phosphinic acids]: synthesis, acid-base and

coordination properties

Tomáš David, Soňa Procházková, Jana Havlíčková, Jan Kotek, Vojtěch Kubíček,* Petr Hermann, Ivan Lukeš

Department of Inorganic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030, 128 40 Prague 2, Czech Republic. E-mail: <u>kubicek@natur.cuni.cz</u>. Tel.: +420 221921264. Fax: +420 221921253

Content:

Table S1. Overall protonation constants $(\log\beta)$ of the title ligands.

Table S2. Overall stability constants ($log\beta_{hlm}$) of complexes with the title ligands.

Figure S1. Distribution diagrams of H_2L^2 (A) and H_2L^3 (B) in absence of metal ions ($c_L = 4 \text{ mM}$, $I = 0.1 \text{ m KNO}_3$, 25°C).

Figure S2. Distribution diagrams of H_2L^2 in the presence of $Cu^{2+}(A)$, $Zn^{2+}(B)$, $Ni^{2+}(C)$ and $Co^{2+}(D)$ ions ($c_L = c_M = 4 \text{ mM}$, $I = 0.1 \text{ M KNO}_3$, 25°C).

Figure S3. Distribution diagrams of H_2L^3 in the presence of Cu^{2+} (A), Zn^{2+} (B), Ni^{2+} (C) and Co^{2+} (D) ions ($c_L = c_M = 4 \text{ mM}$, $I = 0.1 \text{ M KNO}_3$, 25°C).

Figure S4. High resolution MS spectra of $[CuL^{1}]$ (A) and $[CuL^{2}]$ (B) complexes (M:L = 1:1, pH 10).

Table S3. Geometry of the bis(phosphinate) moiety.

Table S4. Geometry of the coordination sphere of Cu^{2+} ions in $(H_2N=C(NH_2)_2)_4[Cu_2(H_{-1}L^2)_2]$ CO₃·10H₂O.

Table S5. Geometry of the coordination sphere of Co^{2+} ions in $\text{Li}_2[\text{Co}_4(\text{H}_{-1}\textbf{L}^1)_3(\text{OH})] \cdot 17.5\text{H}_2\text{O}$.

Table S6. Geometry of the Co_4O_4 cage in $Li_2[Co_4(H_{-1}L^1)_3(OH)] \cdot 17.5H_2O$.

Constant	$H_2 \mathbf{L^1}$	$H_2 L^2$	$H_2 \mathbf{L}^3$
$\log b_1$	10.00(1)	9.84(1)	9.49(3)
$\log b_2$	18.89(1)	18.39(1)	18.29(2)
$\log b_3$	20.24(2)	_	20.38(2)

Table S1. Overall protonation constants $(\log \beta)$ of the title ligands.

Table S2. Overall stability constants $(\log \beta_{hlm})$ of complexes with the title ligands.

Metal ion	h l m	H_2L^1	$H_2 L^2$	$H_2 L^3$
	011	10.76(2)	11.13(1)	9.87(1)
Cu ²⁺	-1 1 1	2.35(3)	3.06(2)	1.05(2)
	-2 1 1	-8.91(4)	-9.23(3)	-9.48(4)
	011	6.78(2)	6.51(1)	6.29(1)
Zn^{2+}	-1 1 1	-1.26(2)	-2.26(2)	-2.29(1)
	-211	-11.98(7)	-13.28(4)	_
	011	7.87(2)	7.13(1)	7.51(1)
Ni ²⁺	-111	-1.17(4)	-1.44(2)	-0.90(2)
	-2 1 1	-13.94(8)	-13.94(4)	_
	011	а	7.28(6)	5.79(1)
Co ²⁺	-1 1 1	-0.73(4)	-0.56(4)	a
	-2 1 1	-8.91(5)	-8.57(5)	а
	-3 1 1	-20.60(7)	-18.60(6)	а

^a not determined due to the formation of precipitate

Figure S2. Distribution diagrams of H_2L^2 in the presence of $Cu^{2+}(A)$, $Zn^{2+}(B)$, $Ni^{2+}(C)$ and $Co^{2+}(D)$ ions ($c_L = c_M = 4 \text{ mM}$, $I = 0.1 \text{ M KNO}_3$, 25°C).

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is © The Royal Society of Chemistry 2012

Table S3. Geometry of the bis(phosphinate) moiety.

	Distances P–C [Å]	Distances P–O [Å]	Distances C–O [Å]	Angles P–C–P (°)
$H_2L^1 \cdot 0.5H_2O$	1.846(2)	1.5049(11)	1.436(2)	114.39(8)
	1.854(2)	1.5121(11)		
		1.5024(11)		
		1.5106(11)		
$H_2L^3 \cdot H_2O$	1.8123(9)	1.5055(9)	-	119.44(9)
		1.5100(9)		
$Li_2[Co_4(H_1L^1)_3(OH)] \cdot 17.5H_2O$	1.849(3)	1.503(2)	1.442(4)	107.2(2)
	1.855(3)	1.528(2)	1.440(3)	107.2(1)
	1.846(3)	1.509(2)	1.449(3)	108.6(2)
	1.854(3)	1.526(2)		
	1.847(3)	1.509(2)		
	1.851(3)	1.520(2)		
		1.513(2)		
		1.521(2)		
		1.502(2)		
		1.526(2)		
		1.493(2)		
		1.531(2)		
$(CN_{3}H_{6})_{4}[Cu_{2}(H_{-1}L^{2})_{2}]CO_{3}\cdot 10H_{2}O$	1.859(2)	1.496(2)	1.430(3)	109.57(11)
	1.866(2)	1.511(2)	1.430(3)	109.32(11)
	1.868(2)	1.508(2)		
	1.872(2)	1.511(2)		
		1.495(2)		
		1.504(2)		
		1.503(2)		
		1.509(2)		

Distances (Å)	Angles (°)	Angles (°)
	Unit 1	
Cu1 – N1A 2.001(2)	N1A – Cu1 – O41A 90.02(7)	N1B – Cu2 – O41B 89.05(7)
Cu1 – O41A 1.988(2)	N1A – Cu1 – O41B 164.70(7)	N1B – Cu2 – O41A 163.77(7)
Cu1 – O41B 1.928(2)	N1A – Cu1 – N7B 93.02(8)	N1B – Cu2 – N7A 92.23(8)
Cu1 – N7B 1.998(2)	N1A – Cu1 – O31A 85.38(7)	N1B – Cu2 – O31B 85.83(7)
Cu1 – O31A 2.639(2)	N1A – Cu1 – O51B 104.57(6)	N1B – Cu2 – O51A 101.96(7)
Cu1 – O51B 3.090(2)	O41A – Cu1 – O41B 78.37(6)	O41B – Cu2 – O41A 78.49(6)
	O41A – Cu1 – N7B 174.52(7)	O41B – Cu2 – N7A 175.49(8)
Cu2 – N1B 1.987(2)	O41A – Cu1 – O31A 73.92(6)	O41B – Cu2 – O31B 72.57(6)
Cu2 – O41B 1.984(2)	O41A – Cu1 – O51B 114.64(5)	O41B - Cu2 - O51A 114.39(6)
Cu2 – O41A 1.927(2)	O41B – Cu1 – N7B 99.38(7)	O41A – Cu2 – N7A 101.00(7)
Cu2 – N7A 2.004(2)	O41B - Cu1 - O31A 100.68(6)	O41A – Cu2 – O31B 100.07(6)
Cu2 – O31B 2.717(2)	O41B – Cu1 – O51B 72.08(6)	O41A – Cu2 – O51A 74.41(6)
Cu2 – O51A 2.908(2)	N7B – Cu1 – O31A 101.78(7)	N7A – Cu2 – O31B 103.20(7)
	N7B – Cu1 – O51B 68.95(6)	N7A – Cu2 – O51A 69.56(6)
	O31A – Cu1 – O51B 166.41(5)	O31B – Cu2 – O51A 169.35(5)
	Unit 2	
Cu3 – N1C 2.031(2)	N1C – Cu3 – O41C 94.04(7)	N1D – Cu4 – O41D 95.30(8)
Cu3 – O41C 1.959(1)	N1C – Cu3 – O41D 167.67(7)	N1D – Cu4 – O41C 168.18(9)
Cu3 – O41D 1.976(2)	N1C – Cu3 – N7D 96.32(8)	N1D – Cu4 – N7C 98.75(9)
Cu3 – N7D 2.026(2)	N1C – Cu3 – O31C 79.69(7)	N1D – Cu4 – O31D 79.20(7)
Cu3 – O31C 2.534(2)	N1C – Cu3 – O51D 93.17(7)	N1D – Cu4 – O51C 91.49(7)
Cu3 – O51D 2.503(2)	O41C – Cu3 – O41D 78.72(6)	O41D - Cu4 - O41C 78.58(6)
	O41C – Cu3 – N7D 167.96(7)	O41D – Cu4 – N7C 163.04(7)
Cu4 – N1D 2.024(2)	O41C – Cu3 – O31C 79.60(6)	O41D – Cu4 – O31D 81.02(6)
Cu4 – O41D 1.962(1)	O41C - Cu3 - O51D 101.60(6)	O41D – Cu4 – O51C 104.19(6)
Cu4 – O41C 1.979(2)	O41D – Cu3 – N7D 92.08(7)	O41C – Cu4 – N7C 89.13(7)
Cu4 – N7C 2.025(2)	O41D - Cu3 - O31C 108.41(6)	O41C – Cu4 – O31D 109.44(6)
Cu4 – O31D 2.529(2)	O41D - Cu3 - O51D 78.72(6)	O41C – Cu4 – O51C 80.38(6)
Cu4 – O51C 2.434(2)	N7D – Cu3 – O31C 96.23(7)	N7C – Cu4 – O31D 92.29(7)
	N7D – Cu3 – O51D 83.96(7)	N7C – Cu4 – O51C 84.96(7)
	O31C – Cu3 – O51D 172.84(5)	O31D - Cu4 - O51C 169.81(5)

Table S4. Geometry of the coordination sphere of Cu^{2+} ions in $(H_2N=C(NH_2)_2)_4[Cu_2(H_{-1}L^2)_2]CO_3 \cdot 10H_2O$.

Distances (Å)	Angles (°)	Angles (°)
Co1 – O1 2.090(2)	O41A – Co1 – O1 82.56(8)	O1 – Co3 – O41C 83.95(8)
Co1 – O41A 2.101(2)	N1A – Co1 – O1 96.99(10)	O31B - Co3 - O41C 167.91(8)
Co1 – N1A 2.109(3)	O31C – Co1 – O1 92.40(9)	N1C – Co3 – O41C 100.73(9)
Co1 – O31C 2.121(2)	O51C – Co1 – O1 164.57(8)	O51B - Co3 - O41C 92.60(8)
Co1 – O51C 2.141(2)	O41C – Co1 – O1 81.79(8)	O41B - Co3 - O41C 83.62(7)
Co1 – O41C 2.145(2)	N1A – Co1 – O41A 100.01(9)	O31B - Co3 - O1 91.60(8)
	O31C – Co1 – O41A 168.56(8)	N1C – Co3 – O1 94.79(10)
Co2 – O1 2.063(2)	O51C – Co1 – O41A 94.25(8)	O51B - Co3 - O1 164.54(8)
Co2 – O41B 2.091(2)	O41C – Co1 – O41A 83.88(8)	O41B - Co3 - O1 81.90(8)
Co2 – O51A 2.120(2)	O31C – Co1 – N1A 90.77(9)	N1C – Co3 – O31B 90.82(9)
Co2 – N1B 2.124(3)	O51C – Co1 – N1A 98.44(10)	O51B – Co3 – O31B 88.71(8)
Co2 – O31A 2.131(2)	O41C – Co1 – N1A 175.77(9)	O41B - Co3 - O31B 84.63(8)
Co2 – O41A 2.162(2)	O51C – Co1 – O31C 87.88(9)	O51B – Co3 – N1C 100.65(10)
	O41C – Co1 – O31C 85.24(8)	O41B – Co3 – N1C 174.28(9)
Co3 – O41C 2.071(2)	O41C – Co1 – O41C 82.85(8)	O41B - Co3 - O51B 82.75(8)
Co3 – O1 2.075(2)		
Co3 – O31B 2.084(2)	O41B – Co2 – O1 84.70(8)	O41B – Co4 – N7B 94.95(9)
Co3 N1C 2.111(3)	O51A – Co2 – O1 165.12(8)	N7C – Co4 – N7B 89.35(10)
Co3 – O51B 2.138(2)	N1B – Co2 – O1 97.05(9)	N7A – Co4 – N7B 90.99(10)
Co3 – O41B 2.192(2)	O31A – Co2 – O1 89.41(8)	O41A – Co4 – N7B 174.15(9)
	O41A – Co2 – O1 81.75(8)	O41C – Co4 – N7B 92.96(9)
Co4 – N7B 2.128(3)	O51A – Co2 – O41B 96.48(8)	N7C – Co4 – O41B 174.28(9)
Co4 – O41B 2.1470(2)	N1B – Co2 – O41B 98.64(9)	N7A – Co4 – O41B 91.91(9)
Co4 – N7C 2.148(3)	O31A – Co2 – O41B 167.09(8)	O41A – Co4 – O41B 83.05(8)
Co4 – N7A 2.154(3)	O41A – Co2 – O41B 84.22(8)	O41C – Co4 – O41B 81.68(7)
Co4 – O41A 2.155(2)	N1B – Co2 – O51A 97.43(9)	N7A – Co4 – N7C 91.78(10)
Co4 – O41C 2.201(2)	O31A – Co2 – O51A 86.31(8)	O41A – Co4 – N7C 92.30(9)
	O41A – Co2 – O51A 83.61(8)	O41C - Co4 - N7C 94.36(9)
	O31A – Co2 – N1B 93.47(9)	O41A – Co4 – N7A 94.57(8)
	O41A – Co2 – N1B 176.80(9)	O41C – Co4 – N7A 172.73(8)
	O41A – Co2 – O31A 83.56(8)	O41C - Co4 - O41A 81.32(7)

Table S5. Geometry of the coordination sphere of Co^{2+} ions in $\text{Li}_2[\text{Co}_4(\text{H}_{-1}\textbf{L}^1)_3(\text{OH})] \cdot 17.5\text{H}_2\text{O}$.

Distances (Å)	Angles (°)	Angles (°)
Co1 – Co2 3.1629(5)	O1 – Co1 – O41A 82.56(8)	Co1 – O1 – Co2 99.22(9)
Co1 – Co3 3.1261(6)	O1 – Co1 – O41C 81.79(8)	Co1 – O41A – Co2 95.78(8)
Co1 – Co4 3.2207(5)	O41A - Co1 - O41C 83.88(8)	Co1 – O1 – Co3 97.27(8)
Co2 – Co3 3.1335(6)	O1 – Co2 – O41A 81.75(8)	Co1 – O41C – Co3 95.69(8)
Co2 – Co4 3.1761(5)	O1 – Co2 – O41B 84.70(8)	Co1 – O41A – Co4 98.33(8)
Co3 – Co4 3.2272(6)	O41A – Co2 – O41B 84.22(8)	Co1 – O41C – Co4 95.64(8)
	O1 – Co3 – O41B 81.90(8)	Co2 – O1 – Co3 98.46(9)
	O1 – Co3 – O41C 83.95(8)	Co2 – O41B – Co3 94.01(8)
	O41B – Co3 – O41C 83.62(7)	Co2 – O41A – Co4 94.74(8)
	O41A - Co4 - O41B 83.05(8)	Co2 – O41B – Co4 97.08(8)
	O41B - Co4 - O41C 81.68(7)	Co3 – O41B – Co4 96.09(8)
	O41C – Co4 – O41A 81.32(7)	Co3 – O41C – Co4 98.08(8)

Table S6. Geometry of the Co_4O_4 cage in $Li_2[Co_4(H_{-1}L^1)_3(OH)] \cdot 17.5H_2O$.