Supporting Information

Novel mercury selenidoantimonates with structures ranging from one-dimensional ribbon to three-dimensional open-framework

Kai-Yao Wang, Dong Ye, Liu-Jiang Zhou, Mei-Ling Feng and Xiao-Ying Huang*

State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, the Chinese, Academy of Sciences, Fuzhou, Fujian 350002, P.R. China

Fax: +86 591 83793727; Tel: +86 591 83793727; E-mail: <u>xyhuang@fjirsm.ac.cn</u>

Table S1. Selected hydrogen bonds data for $1-5^a$.							
D-H···A	d(D-H)	$d(H \cdots A)$	$d(D \cdots A)$	<(DHA)			
$[Ni(1,2-pda)_3]HgSb_2Se_5(1)$							
N(1)-H(1C)Se(1)#3	0.90	2.68	3.561(6)	166.5			
$N(1)-H(1D)\cdots Se(1)$	0.90	2.77	3.668(6)	176.8			
N(2)-H(2B)Se(3)#4	0.90	2.96	3.772(7)	150.4			
N(3)-H(3D)Se(4)#4	0.90	2.71	3.543(7)	155.1			
N(3)-H(3E)Se(1)	0.90	2.94	3.780(6)	155.0			
N(4)-H(4C)Se(1)#3	0.90	2.95	3.799(7)	157.6			
N(5)-H(5B)Se(2)#3	0.90	2.78	3.547(5)	144.3			
N(5)-H(5C)Se(5)#5	0.90	2.85	3.560(6)	136.7			
N(6)-H(6D)Se(5)#4	0.90	2.79	3.651(6)	159.8			
C(4)-H(4A)Se(4)#6	0.97	2.88	3.805(8)	160.0			
$[Mn(dien)_2]HgSb_2Se_5 (2)$							
N(1)-H(1A)Se(5)#3	0.90	2.79	3.651(6)	159.5			
N(1)-H(1B)Se(5)#4	0.90	2.70	3.584(6)	166.1			
N(2)- $H(2A)$ ····Se(1)	0.91	2.79	3.592(7)	147.7			
N(3)-H(3A)Se(3)#4	0.90	2.82	3.673(8)	158.9			
N(3)-H(3B)Se(3)#5	0.90	2.68	3.548(8)	163.3			
$N(4)-H(4A)\cdots Se(1)$	0.90	2.84	3.702(8)	160.5			
N(6A)-H(6C)Se(4)#5	0.90	2.80	3.61(4)	151.2			
N(6B)-H(6E)Se(4)#5	0.90	2.68	3.57(4)	171.7			

C(8B)-H(8D)Se(5)#3	0.97	2.97	3.93(2)	177.2			
$[Ni(en)_3]Hg_2Sb_2Se_6 (3)$							
N(1)-H(1C)Se(3)#3	0.90	2.85	3.653(7)	148.7			
N(1)-H(1D)Se(2)	0.90	2.72	3.492(7)	144.1			
C(2)-H(2A)Se(1)#6	0.97	2.78	3.648(9)	149.6			
N(2)-H(2C)Se(2)#7	0.90	3.00	3.747(8)	141.0			
$N(3)-H(3C)\cdots Se(2)$	0.90	3.01	3.777(9)	144.5			
$[Ni(en)(teta)]Hg_2Sb_2Se_6 (4)$							
N(1)- $H(1C)$ ···Se(5)	0.90	2.66	3.46(2)	147.4			
N(1)-H(1D)Se(1)	0.90	2.89	3.74(2)	157.2			
N(2)-H(2C)Se(4)#7	0.91	2.65	3.551(19)	171.8			
N(3)-H(3C)Se(2)#8	0.91	3.02	3.77(2)	141.3			
$N(4)-H(4D)\cdots Se(5)$	0.90	2.93	3.70(2)	145.6			
N(4)-H(4C)Se(1)#2	0.90	3.06	3.71(2)	130.7			
N(5)-H(5C)Se(2)#8	0.90	2.62	3.48(2)	160.8			
N(5)-H(5D)Se(4)#7	0.90	3.06	3.50(2)	112.5			
N(6)-H(6D)Se(5)#3	0.90	2.88	3.591(19)	137.4			
C(1)- $H(1B)$ ····Se(3)	0.97	2.91	3.67(2)	135.3			
C(6)-H(6B)Se(1)#2	0.97	2.77	3.54(3)	136.4			
C(8)-H(8B)Se(3)#5	0.97	2.93	3.71(3)	138.3			
$[(Me)_2NH_2][Hg_3Sb_3Se_8]$ (5)							
N(1)- $H(1B)$ ····Se(2)	0.90	2.65	3.38(4)	139.1			
N(1)-H(1A)Se(2)#7	0.90	2.65	3.38(4)	139.1			
C(2)-H(2C)Se(2)#9	0.96	2.96	3.79(5)	144.4			

^{*a*}Symmetry transformations used to generate equivalent atoms:

For **1**: #1 -*x*+2, -*y*, -*z*; #2 -*x*+1, -*y*, -*z*; #3 -*x*+1, -*y*, -*z*+1; #4 -*x*+2, -*y*+1, -*z*+1; #5 *x*, *y*, *z*+1; #6 *x*-1, *y*, *z*.

For **2**: #1 *x*+1/2, *y*, -*z*+3/2; #2 *x*-1/2, *y*, -*z*+3/2; #3 -*x*+1, *y*+1/2, -*z*+3/2; #4 -*x*+1/2, *y*+1/2, *z*; #5 *x*-1/2, -*y*+3/2, -*z*+1.

For **3**: #1 -*x*+3/2, -*y*+3/2, -*z*+1; #2 -*x*+3/2, *y*-1/2, -*z*+3/2; #3 -*x*+3/2, -*y*+1/2, -*z*+1; #4 -*x*+3/2, *y*+1/2, -*z*+3/2; #5 -*x*+1, *y*, -*z*+1/2; #6 *x*-1/2, *y*-1/2, *z*; #7 -*x*+1, -*y*+1, -*z*+1.

For **4**: #1 *x*, *y*-1, *z*; #2 *x*, *y*+1, *z*; #3 *x*+1/2, -*y*+3/2, *z*; #4 *x*-1/2, -*y*+1/2, *z*; #5 *x*+1/2, -*y*+1/2, *z*; #6 *x*-1/2, -*y*+3/2, *z*; #7 -*x*+1/2, *y*-1/2, *z*+1/2; #8 -*x*+1, -*y*+1, *z*+1/2.

For **5**: #1 -*x*+2, -*y*+1, *z*; #2 -*x*+2, *y*+0, *z*-1/2; #3 *x*, -*y*+1, *z*-1/2; #4 -*x*+2, -*y*+1/2, *z*-1/2; #5 *x*, -*y*+1, *z*+1/2; #6 -*x*+2, -*y*+1/2, *z*+1/2; #7 *x*, -*y*+1/2, *z*; #8 -*x*+1, -*y*+1, *z*; #9 -*x*+1, *y*+0, *z*+1/2.

Fig. S1 Topology of the $[Hg_2Sb_2Se_6]_n^{2n}$ layer in compounds **3** and **4** (blue node: $\{Hg_2Se_6\}$ group; pink node: $\{SbSe_3\}$ group).

Fig. S2 The intersecting 2D channels in compound 5 running along the *b* and *c* axes.

Fig. S3 The framework topology of compound **5** (blue node: {HgSe₄} group; pink node: {SbSe₃} group).

Fig. S4 The PXRD patterns of the TG residues for compounds 1-5.

Fig. S5 The band structure of 2. Fermi level is set at 0 eV (dashed line).