Electronic Supporting Information

Selective oxidation of thiourea with H_2O_2 catalyzed by $[Ru^{III}(edta)(H_2O)]^-$: Kinetic and mechanistic studies

Debabrata Chatterjee,* Sabine Rothbart and Rudi van Eldik*

Figure S1. Reactivity of Compound 0, $[Ru^{III}(edta)(OOH)]^{2-}$, towards TU. $[Ru^{III}(edta)] = 0.1$ mM, $[H_2O_2] = 20$ mM at pH 3.9 (2 mM acetate buffer) and 25 °C. TU (40 mM) was added after 2 sec.

Figure S2. Reactivity of Compound I, $[Ru^{V}(edta)O)]^{T}$, towards TU. $[Ru^{III}(edta)] = 0.1$ mM, $[H_2O_2] = 0.2$ mM at pH 3.9 (2 mM acetate buffer) an 25 °C. TU (40 mM) was added after 2 min.

Figure S3. Results of HPLC studies for the oxidation of TU by the Ru(edta)/H₂O₂ system. (a) Reaction mixture was analyzed just after disappearance of the red colour (after 800 sec) and b) after 1 h. [Ru(edta)(H₂O)⁻] = 2 x 10⁻⁴ M, [TU] = 2 x 10⁻³ M, [H₂O₂] = 2 x 10⁻² M, pH = 4.8 adjusted by (NaOH/HCl).

Figure S4. Kinetic traces recorded during oxidation of TU by the Ru(edta)/ H_2O_2 system at (a) pH = 1.6 and (b) pH = 9.2. [Ru(edta)] = 0.2 mM, [TU] = 0.4 mM, [H₂O₂] = 20 mM.