Electronic Supplementary Information

Accompanying the manuscript

Straightforward approach to efficient oxidative DNA cleaving agents based on Cu(II) complexes of heterosubstituted cyclens

Jan Hormann, Chrischani Perera, Naina Deibel, Dieter Lentz, Biprajit Sarkar and Nora Kulak*

List of contents:

- S-1: Experimental section
- S-2: Crystallographic data
- S-3: DNA cleavage experiments
- S-4: Electrochemical experiments

Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstr. 34/36, D-14195 Berlin, Germany. E-mail: nora.kulak@fu-berlin.de; Fax: +49 30 838 52440; Tel: +49 30 838 54697

S-1: Experimental Section

Synthesis of [12]aneN₄(L1)

N, N', N''-Tris(*p*-tolylsulfonyl)diethylentriamine¹, disodium N, N', N''-tris(*p*-tolylsulfonyl)diethylentriamine¹, N, O, O'-tris(*p*-tolylsulfonyl)diethanolamine² and 1,4,7,10-tetrakis(*p*-tolylsulfonyl)-1,4,7,10-tetraazacyclododecane³ were prepared as previously described. The deprotection was accomplished according to a procedure published by Brosse *et al.*⁴ Alternatively, [12]aneN₄ was obtained as a donation from mivenion GmbH.

Fig. S-1,1. Synthesis of [12]aneN₄(L1).

Synthesis of [12]aneN₃O (L2)

O, O '-Bis(*p*-tolylsulfonyl)-oxapentane⁵, 4,7,10-tris(*p*-tolylsulfonyl)-1-oxa-4,7,10-triazacyclododecane⁶ and 1-oxa-4,7,10-triazacyclododecane⁷ were prepared as previously described.

Fig. S-1,2. Synthesis of [12]aneN₃O (L2).

Synthesis of [12]aneN₃S (L3)

Bis[(*p*-tolylsulfonylamino)ethyl]sulfide⁸, disodium bis[(*p*-tolylsulfonylamino)ethyl]sulfide⁸ and 4,7,10-tris(*p*-tolylsulfonyl)-1-thia-4,7,10-triazacyclododecane⁹ were synthesised as previously described. The deprotection of 4,7,10-tris(*p*-tolylsulfonyl)-1-thia-4,7,10-triazacyclododecane to 1-thia-4,7,10-triazacyclododecane was performed in analogy to the procedure published by Brosse *et al.*⁴ originally developed for the deprotection of 1,4,7,10-tetrakis(*p*-tolylsulfonyl)-1,4,7,10-tetraazacyclododecane.

Fig. S-1,3. Synthesis of [12]aneN₃S (L3).

General procedure for the synthesis of the metal complexes 1, 2 and 3

To a solution of the corresponding ligand L1 - L3 (0.6 mmol) in 1 mL methanol a solution of copper nitrate trihydrate (0.6 mmol) in 2 mL methanol was added via a syringe. The solution was stirred for 10 minutes under reflux and the product was crystallised upon cooling at -19 °C. Crystals were filtered off, washed with ethanol and dried in vacuum. Crystals suitable for X-ray analysis of complexes 2 and 3 were obtained by slow diffusion of diethyl ether into a methanolic solution of the complex.

[Cu([12]aneN₄)(NO₃)]NO₃ (1): Yield: 0.1310 g (60%). Elemental analysis (C₈H₂₀CuN₆O₆): calcd. C 26.78, H 5.65 and N 23.31%; found C 26.70, H 5.60 and N 23.36%. IR $\tilde{v} = 3232$ (m, v NH), 2928 and 2881 (w, v CH₂), 1425 (m, δ CH₂), 1300 (s, v NO₃⁻), 1078 (m), 981 (m), 812 (m) cm⁻¹. UV/VIS λ_{max} (fig. S-1,4): 600 nm ($\varepsilon = 275.0$ L mol⁻¹ cm⁻¹). MS (ESI⁺) (m/z): calcd. for [1-H-2NO₃]⁺ 234.0900; found 234.0908. [Cu([12]aneN₃O)(NO₃)]NO₃ (**2**): Yield: 0.1440 g (63%). Elemental analysis (C₈H₁₉CuN₅O₇): calcd. C 26.63, H 5.31 and N 19.41%; found C 26.64, H 5.34 and N 19.42%. IR $\tilde{v} = 3209$ and 3156 (w, v NH), 2940 and 2892 (w, v CH₂), 1746 (vw, δ NH), 1483 (m, δ CH₂), 1316 and 1278 (s, v NO₃⁻), 1002 (s), 865 (m), 824 (m) cm⁻¹. UV/VIS λ_{max} (fig. S-1,4): 711 nm ($\varepsilon = 179.5$ L mol⁻¹ cm⁻¹). MS (ESI⁺) (m/z): calcd. for [**2**-H-2NO₃]⁺ 235.0745; found 235.0748.

[Cu([12]aneN₃S)(NO₃)]NO₃ (**3**): Yield: 0.0905 g (40%). Elemental analysis (C₈H₁₉CuN₅O₆S): calcd. for C 25.50, H 5.08, N 18.58 and S 8.51%; found C 25.60, H 5.14, N 18.53 and S 8.51%. IR \tilde{v} = 3216 and 3137 (w, v NH), 2978, 2923 and 2871 (w, v CH₂), 1740 (vw, δ NH), 1427 and 1388 (m, δ CH₂), 1297 (s, v NO₃⁻), 1099 (s) cm⁻¹. UV/VIS λ_{max} (fig. S-1,4): 621 nm (ε = 396.6 L mol⁻¹ cm⁻¹). MS (ESI⁺) (m/z): calcd. for [**3**-H-2NO₃]⁺ 251.0512; found 251.0513.

Fig. S-1,4. UV/Vis spectra of complexes 1, 2 and 3 (5 mM) in 100 mM Tris-HCl buffer (pH 7.4).

S-2: Crystallographic data

Crystallographic details: X-ray diffraction data were collected using a Bruker-AXS SMART CCD system. The structures were solved by direct methods and refined by full matrix least square methods, SHELX-97.¹⁰

Table S-2,1. Crystallographic and experimental details of complex 2

360.82
Monoclinic, P2 ₁ /n
133(2)
7.9211(19), 11.979(3), 14.757(3)
92.587(5)
1398.9(6)
4
1.713
Mo-K _a
1.604
748
0.40 x 0.15 x 0.07
2.19 to 30.56
$-11 \le h \le 11, -16 \le k \le 13, -21 \le l \le 19$
17378
4238 [<i>R</i> (int) = 0.0253]
98.8
Semi-empirical from equivalents
0.75 and 0.54
Full-matrix least-squares on F^2
4238 / 0 / 202
1.089

Final <i>R</i> indices $[I > 2 \sigma(I)]$	$R_1 = 0.0290, wR_2 = 0.0683$
R indices (all data)	$R_1 = 0.0399, wR_2 = 0.0731$
Largest diff. peak and hole (e $Å^{-3}$)	0.597 and -0.399

Table S-2,2. Selected bond lengths [Å] of complex 2

Cu(1)-N(2)	1.9837(15)	C(5)-C(7)	1.515(2)
Cu(1)-N(3)	2.0224(15)	C(7)-N(3)	1.493(2)
Cu(1)-N(1)	2.0267(14)	C(8)-N(3)	1.488(2)
Cu(1)-O(2)	2.0312(13)	C(8)-C(9)	1.518(2)
Cu(1)-O(1)	2.2310(12)	C(9)-O(1)	1.4348(19)
C(1)-O(1)	1.4347(19)	N(4)-O(4)	1.2227(19)
C(1)-C(2)	1.518(2)	N(4)-O(3)	1.2457(19)
C(2)-N(1)	1.491(2)	N(4)-O(2)	1.2955(17)
C(3)-N(1)	1.487(2)	N(5)-O(7)	1.2390(19)
C(3)-C(4)	1.516(2)	N(5)-O(6)	1.245(2)
C(4)-N(2)	1.478(2)	N(5)-O(5)	1.261(2)
C(5)-N(2)	1.478(2)		

Table S-2,3. Angles [°] of complex 2

N(2)-Cu(1)-N(3)	86.73(6)	C(3)-N(1)-Cu(1)	106.34(10)
N(2)-Cu(1)-N(1)	86.54(6)	C(2)-N(1)-Cu(1)	110.47(10)
N(3)-Cu(1)-N(1)	159.40(6)	C(5)-N(2)-C(4)	116.26(13)
N(2)-Cu(1)-O(2)	152.88(5)	C(5)-N(2)-Cu(1)	108.56(10)
N(3)-Cu(1)-O(2)	95.04(5)	C(4)-N(2)-Cu(1)	109.51(10)
N(1)-Cu(1)-O(2)	99.78(5)	C(8)-N(3)-C(7)	116.14(14)
N(2)-Cu(1)-O(1)	110.88(5)	C(8)-N(3)-Cu(1)	109.56(10)
N(3)-Cu(1)-O(1)	82.29(5)	C(7)-N(3)-Cu(1)	107.12(10)
N(1)-Cu(1)-O(1)	81.97(5)	O(4)-N(4)-O(3)	122.78(13)
O(2)-Cu(1)-O(1)	96.15(4)	O(4)-N(4)-O(2)	119.69(14)
O(1)-C(1)-C(2)	107.37(13)	O(3)-N(4)-O(2)	117.52(13)

N(1)-C(2)-C(1)	113.26(13)	O(7)-N(5)-O(6)	120.67(16)
N(1)-C(3)-C(4)	110.72(13)	O(7)-N(5)-O(5)	120.30(15)
N(2)-C(4)-C(3)	107.68(13)	O(6)-N(5)-O(5)	119.03(14)
N(2)-C(5)-C(7)	107.96(14)	C(1)-O(1)-C(9)	114.87(13)
N(3)-C(7)-C(5)	111.10(13)	C(1)-O(1)-Cu(1)	105.20(8)
N(3)-C(8)-C(9)	112.92(13)	C(9)-O(1)-Cu(1)	106.23(9)
O(1)-C(9)-C(8)	107.24(13)	N(4)-O(2)-Cu(1)	102.11(9)
C(3)-N(1)-C(2)	115.28(13)		

 Table S-2,4. Crystallographic and experimental details of complex 3

Empirical formula	$C_8H_{19}CuN_5O_6S$
Formula weight	376.88
Crystal system, space group	Monoclinic, $P2_1/c$
Temperature (K)	133(2)
<i>a, b, c</i> (Å)	8.5321(16), 11.903(2), 14.168(3)
β (°)	94.368(4)°
Volume (Å ³)	1434.7(5)
Ζ	4
D _x (Mg m ⁻³)	1.745
Radiation type	Μο-Κα
μ (mm ⁻¹)	1.703
F(000)	780
Crystal size (mm)	0.40 x 0.15 x 0.07
Theta range for data collection (°)	2.24 to 30.56
Index ranges	$-11 \le h \le 12, -15 \le k \le 16, -19 \le l \le 20$
Reflections collected	17105
Independent reflections	4381 [<i>R</i> (int) = 0.0143]
Completeness to $\Theta = 30.56^{\circ}$ (%)	99.7

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is The Royal Society of Chemistry 2013

Absorption correction	Semi-empirical from equivalents
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	4381 / 0 / 202
Goodness-of-fit on F^2	1.129
Final <i>R</i> indices $[I > 2 \sigma(I)]$	$R_1 = 0.0241, wR_2 = 0.0639$
R indices (all data)	$R_1 = 0.0264, wR_2 = 0.0649$
Largest diff. peak and hole (e $Å^{-3}$)	0.619 and -0.288

Table S-2,5. Selected bond lengths [Å] of complex 3

Cu(1)-N(2)	2.0027(13)	C(5)-N(2)	1.481(2)
Cu(1)-N(3)	2.0176(13)	C(5)-C(6)	1.516(2)
Cu(1)-N(1)	2.0423(13)	C(6)-N(3)	1.485(2)
Cu(1)-O(1)	2.1596(11)	C(7)-N(3)	1.478(2)
Cu(1)-S(2)	2.3283(5)	C(7)-C(8)	1.524(2)
S(2)-C(1)	1.8184(16)	N(4)-O(3)	1.2406(17)
S(2)-C(8)	1.8211(17)	N(4)-O(2)	1.2408(18)
C(1)-C(2)	1.523(2)	N(4)-O(1)	1.2848(16)
C(2)-N(1)	1.485(2)	N(5)-O(6)	1.2383(18)
C(3)-N(1)	1.492(2)	N(5)-O(5)	1.2442(18)
C(3)-C(4)	1.515(2)	N(5)-O(4)	1.2640(17)
C(4)-N(2)	1.4782(19)		

Table S-2,6. Angles [°] of complex 3

N(2)-Cu(1)-N(3)	86.19(5)	N(3)-C(7)-C(8)	108.85(13)
N(2)-Cu(1)-N(1)	85.81(5)	C(7)-C(8)-S(2)	112.58(11)
N(3)-Cu(1)-N(1)	146.42(5)	C(2)-N(1)-C(3)	113.02(12)
N(2)-Cu(1)-O(1)	101.94(5)	C(2)-N(1)-Cu(1)	112.70(9)
N(3)-Cu(1)-O(1)	104.32(5)	C(3)-N(1)-Cu(1)	102.27(9)
N(1)-Cu(1)-O(1)	109.24(5)	C(4)-N(2)-C(5)	113.93(12)

N(2)-Cu(1)-S(2)	156.44(4)	C(4)-N(2)-Cu(1)	109.05(10)
N(3)-Cu(1)-S(2)	87.07(4)	C(5)-N(2)-Cu(1)	106.30(9)
N(1)-Cu(1)-S(2)	87.42(4)	C(7)-N(3)-C(6)	114.75(12)
O(1)-Cu(1)-S(2)	101.60(3)	C(7)-N(3)-Cu(1)	106.71(9)
C(1)-S(2)-C(8)	103.98(8)	C(6)-N(3)-Cu(1)	107.80(9)
C(1)-S(2)-Cu(1)	90.53(5)	O(3)-N(4)-O(2)	121.54(13)
C(8)-S(2)-Cu(1)	95.44(5)	O(3)-N(4)-O(1)	118.42(13)
C(2)-C(1)-S(2)	107.06(10)	O(2)-N(4)-O(1)	120.04(13)
N(1)-C(2)-C(1)	110.99(12)	N(4)-O(1)-Cu(1)	117.63(9)
N(1)-C(3)-C(4)	107.38(12)	O(6)-N(5)-O(5)	121.96(15)
N(2)-C(4)-C(3)	109.26(12)	O(6)-N(5)-O(4)	119.11(14)
N(2)-C(5)-C(6)	107.51(12)	O(5)-N(5)-O(4)	118.93(14)
N(3)-C(6)-C(5)	109.06(12)		

S-3: DNA cleavage experiments

The cleavage activity of complexes 1, 2 and 3 towards pBR322 plasmid DNA (Carl Roth) was studied using gel electrophoresis. In a typical experiment plasmid DNA (0.025 μ g mL⁻¹) in Tris-HCl buffer (100 mM, pH 7.4, Fisher Scientific) and ascorbic acid (0.32 mM, Acros) was mixed with different concentrations of complexes 1, 2 and 3. Deionized water (Millipore system) was added up to a total volume of 16 µL before the sample was incubated for given time and temperature. After incubation samples were analysed directly or kept at -20 °C for not more than 24 h. For analysis 3 µL of loading buffer (25 mg bromophenol blue and 4 g saccharose added up to a total volume of 10 mL with deionized water) was added and the sample was divided into two portions of 8 µL each. These were loaded onto an agarose (Lonza, SeaKem LE) gel (1% in 0.5X TBE buffer, Fisher Scientific) containing ethidium bromide (1.0 µg mL⁻¹, Fisher Scientific). Electrophoresis was carried out at 40 V for 2 h using an electrophoresis unit (Carl Roth, power supply: consort EV243) in 0.5X TBE buffer. Bands were visualised by UV light and photographed using a gel documentation system (GelDoc, Bio-Rad). The intensity of the bands was measured using the reference DNA as standard. Taking into account that the supercoiled form I of plasmid DNA has a smaller affinity to bind ethidium bromide, its intensity was multiplied with a correction factor of 1.4.11

Experiments with radical scavengers were conducted as described above using either 200 mM *tert*-butanol or 200 mM DMSO as hydroxyl radical scavenger, 10 mM NaN₃ as singlet oxygen scavenger, 5 mg mL⁻¹ catalase (bovine liver, 2000-5000 units mL⁻¹, Sigma Aldrich) in 0.25X phosphate buffered saline (PBS) as hydrogen peroxide scavenger or 313 units mL⁻¹ superoxide dismutase (bovine liver, 2000-6000 units mg⁻¹, suspension in 3.8 M (NH₄)₂SO₄, Sigma Aldrich) as superoxide anion scavenger. For the sake of comparison, 214 mM (NH₄)₂SO₄ and 0.25X PBS was added to all samples, since superoxide dismutase was purchased as a suspension in an ammonium sulfate solution and catalase had to be pre-incubated at 37 °C in PBS.

However, experiments under argon atmosphere were conducted similar to aerobic experiments. Solutions were prepared using a glove bag (Sigma Aldrich) and degassed water (three freeze-pump-thaw cycles).

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is $\ensuremath{\mathbb{O}}$ The Royal Society of Chemistry 2013

S-3,1. Concentration dependent:

[Cu([12]aneN₄)(NO₃)]NO₃ 1:

[Cu([12]aneN₃O)(NO₃)]NO₃ 2:

[Cu([12]aneN₃S)(NO₃)]NO₃ 3:

Effect of different concentrations of complexes 1, 2 and 3 on pBR322 (0.025 μ g μ L⁻¹) cleavage activity in Tris-HCl buffer (100 mM, pH 7.4) and ascorbic acid (0.32 mM) at 37 °C for 2 h. Illustrated is the average of two measurements, the standard deviation is shown as error bars.

S-3,2. pH dependent:

[Cu([12]aneN₄)(NO₃)]NO₃ 1:

control	рН 7	pH 8	рН 9
		-	-

[Cu([12]aneN₃O)(NO₃)]NO₃ 2:

[Cu([12]aneN₃S)(NO₃)]NO₃ 3:

Effect of different pH values on pBR322 (0.025 μ g μ L⁻¹) cleavage activity of complexes **1**, **2** and **3** (0.04 mM) in Tris-HCl buffer (100 mM, pH 7, pH 8 and pH 9) and ascorbic acid (0.32 mM) at 37 °C for 2 h. A control pBR322 plasmid DNA was incubated without ascorbic acid and complexes **1**, **2** and **3** in Tris-HCl buffer (100 mM, pH 7). Illustrated is the average of two measurements, the standard deviation is shown as error bars.

[Cu([12]aneN₄)(NO₃)]NO₃ 1:

[Cu([12]aneN₃O)(NO₃)]NO₃ 2:

[Cu([12]aneN₃S)(NO₃)]NO₃ 3:

Effect of the incubation temperature on pBR322 (0.025 μ g μ L⁻¹) cleavage activity of complexes **1**, **2** and **3** (0.01 mM) in Tris-HCl buffer (100 mM, pH 7.4) and ascorbic acid (0.32 mM) for 2 h. A control pBR322 plasmid DNA was incubated without ascorbic acid and complexes **1**, **2** and **3** in Tris-HCl buffer at 25 °C. Illustrated is the average of two measurements, the standard deviation is shown as error bars.

[Cu([12]aneN₃O)(NO₃)]NO₃ 2:

[Cu([12]aneN₃S)(NO₃)]NO₃ 3:

Effect of the reaction time on pBR322 (0.025 μ g μ L⁻¹) cleavage activity of complexes **1**, **2** and **3** (0.01 mM) in Tris-HCl buffer (100 mM, pH 7.4) and ascorbic acid (0.32 mM) at 37 °C. A control pBR322 plasmid DNA was incubated without ascorbic acid and complexes **1**, **2** and **3** in Tris-HCl buffer for 0.75 h. Illustrated is the average of two measurements, the standard deviation is shown as error bars.

S-3,5. Presence of reactive oxygen species (ROS) scavengers:

[Cu([12]aneN₄)(NO₃)]NO₃ 1:

[Cu([12]aneN₃O)(NO₃)]NO₃ 2:

[Cu([12]aneN₃S)(NO₃)]NO₃ 3:

Effect of ROS scavengers on pBR322 (0.025 μ g μ L⁻¹) cleavage activity of complexes **1**, **2** and **3** (0.04 mM) in Tris-HCl buffer (100 mM, pH 7.4) containing 214 mM (NH₄)₂SO₄, 0.25X PBS and ascorbic acid (0.32 mM) at 37 °C for 2 h. A control pBR322 plasmid DNA was incubated without ascorbic acid and complexes **1**, **2** and **3** in Tris-HCl buffer (control), additionally DNA was incubated with complexes **1**, **2** and **3**, but without ROS scavengers (w/o).

S-3,6. Aerobic and anaerobic:

Effect of aerobic and anaerobic conditions on pBR322 (0.025 μ g μ L⁻¹) cleavage activity of complexes **1**, **2** and **3** (0.04 mM) in Tris-HCl buffer (100 mM, pH 7.4) and ascorbic acid (0.32 mM) at 37 °C for 2 h. A control pBR322 plasmid DNA was incubated without ascorbic acid and complexes **1**, **2** and **3** in Tris-HCl buffer under aerobic and anaerobic conditions. Illustrated is the average of two measurements, the standard deviation is shown as error bars.

S-4: Electrochemical experiments

Cyclic voltammetry was carried out in 0.1 M KCl solutions (Millipore water) using a threeelectrode configuration (glassy carbon working electrode, Pt counter electrode, Ag wire as pseudoreference) and PAR VersaSTAT 4 potentiostat. The ferrocene/ferrocenium (Fc/Fc⁺) couple served as internal reference. Experimental conditions were adapted from reference 12. Redox potentials:

1: $E_a = -1.0 V$ (copper set free upon reduction, $E_{1/2} = -0.57 V$)

2: $E_a = -0.74 V$

3: $E_{1/2} = -0.62 V$

S-4,1. Cyclic voltammogram of complexes 1, 2 and 3:

S-4,2. Dependence of copper release on number of cycles in the cyclic voltammogram of 1:

- 1 T. J. Atkins, J. E. Richman, W. F. Oettle, *Org. Synth.*, 1988, Coll. Vol. 6, 652.
- 2 J. Huang, Z. Zhou, T. H. Chan, *Synthesis*, 2009, **14**, 2341.
- 3 J. E. Richman, T. J. Atkins, J. Am. Chem. Soc., 1974, 96, 2268.
- 4 V. Montembault, H. Mouaziz, V. Blondeau, R. Touchard, J.-C. Soutif, J.-C. Brosse, *Synth. Commun.*, 1999, **29**, 4279.
- 5 E. M. D. Keegstra, J. W. Zwikker, M. R. Roest , L. W. Jenneskens, *J. Org. Chem.*, 1992, **57**, 6678.
- 6 C. S. Rossiter, R. A. Mathews, J. R. Morrow, *Inorg. Chem.*, 2005, 44, 9397.
- C. S. Rossiter, R. A. Mathews, I. M. A. del Mundo, J. R. Morrow, *J. Inorg. Biochem.*, 2009, 103, 64.
- 8 P. Hoffmann, A. Steinhoff, R. Mattes, Z. Naturforsch., 1987, 42b, 867.
- 9 S. T. Marcus, P. V. Bernhardt, L. Grøndahl, L. R. Gahan, *Polyhedron*, 1999, **18**, 3451.
- 10 G. M. Sheldrick, SHELX97 Programs for Crystal Structure Analysis (Release 97-2), Institut f
 ür Anorganische Chemie der Universit
 ät, Tammannstrasse 4, D-37077 G
 öttingen, Germany, 1998.
- C. W. Haidle, R. S. Lloyd, D. L. Robberson, In Bleomycin: Chemical, Biochemical, and Biological Aspects; Springer-Verlag: New York 1979, 222-243.
- L. M. P. Lima, D. Esteban-Gómez, R. Delgado, C. Platas-Iglesias, R. Tripier, *Inorg. Chem.*, 2012, 51, 6916.