Electronic Supplementary Information

On the Structural Diversity of [K(18-Crown-6)EPh₃] (E = C, Si, Ge, Sn, Pb) Complexes: Synthesis, Crystal Structures and NOESY NMR Study

Christian Kleeberg*

Institut für Anorganische und Analytische Chemie, Technische Universität Carolo-Wilhelmina zu Braunschweig, Hagenring 30, 38106 Braunschweig, Germany.

* Author E-mail Address: ch.kleeberg@tu-braunschweig.de

Contents

1.	Thermal decomposition of ((<i>i</i> PrN) ₂ C ₂ H ₄)B–PbPh ₃ (4c)	S2
2.	¹ H- ¹ H NOESY NMR spectra of 6a-d	S3
3.	Variable temperature ¹ H NMR spectra of [K(18-C-6)CPh ₃] (6a)	S7
4.	Reaction of <i>in situ</i> prepared 6a , 6c-d with BnBr to $Ph_3E-CH_2Ph_{1}$	S8
	References	. S10

/ a.u.

Intensity

0

-1

-2

10°

200

1. Thermal decomposition of ((*i*PrN)₂C₂H₄)B–PbPh₃ (**4c**)

Under an atmosphere of nitrogen a small amount of **4c** was placed in a melting point capillary and flame sealed. The capillary was heated to $114^{\circ} - 115^{\circ}$ C until formation of a black material. Some of the black material was attached to a glass rod by means of perfluoroether oil (in the presence of air) and a powder diffraction pattern was recorded using an Oxford Diffraction Nova A instrument, using mirror-focused CuK α radiation at nominally 100 K. The data were reduced employing the CrysAlisPro software.^{S1} A Rietveld fitting was performed using the structure of elemental lead as starting structure.^{S3} The refined parameters were: unit cell parameters, phase scale factor, background coefficients. A polynomial background function was employed to account for the amorphous scattering of the oil and glass (Fig. S1).^{S2} The final crystallographic and Rietveld refinement data are listed below:

40°

20

50°

60°

70°

30°

The diffraction pattern gives evidence that one of the decomposition products of **4c** is elemental lead. However, additional reflections below $2\theta = 30^{\circ}$ are observed indicating the presence of so far unidentified additional crystalline material. Note that none of the lead oxides PbO, PbO₂ and Pb₃O₄ account for these reflections.

2. ¹H-¹H NOESY NMR spectra of **6a-d**

In a nitrogen filled glovebox a sample of the respective compound was dissolved in dried and degassed THF-d₈ at a concentration of 40–46 μ mol/ml, the solution was filtered, filled into an NMR tube and flame sealed.

Fig. S2: ¹H-¹H-NOESY NMR spectrum of **6a** in THF-d₈ at –70 °C. * residual THF signal.

Fig. S3: ¹H-¹H-NOESY NMR spectrum of **6b** in THF-d₈ at rt. Inset: Trace of the NOESY spectrum at the shift of the OCH₂ signal. * residual THF signal.

Fig. S4: ¹H-¹H-NOESY NMR spectrum of **6c** in THF-d₈ at rt. Inset: Trace of the NOESY spectrum at the shift of the OCH₂ signal. * residual THF signal.

Fig. S5: ¹H-¹H-NOESY NMR spectrum of **6d** in THF-d₈ at rt. Inset: Trace of the NOESY spectrum at the shift of the OCH₂ signal. * residual THF signal.

3. Variable temperature ¹H NMR spectra of [K(18-C-6)CPh₃] (6a)

The sample was prepared as described in paragraph 2.

4. Reaction of *in situ* prepared **6a**,**c**-**d** with BnBr to Ph_3E-CH_2Ph

Ph₃C–CH₂Ph:^{S4a} Under an atmosphere of nitrogen **5** (110 mg, 289 μ mol, 1 eq) and **3a** (107 mg, 289 μ mol, 1 eq) were mixed in dry THF (6 ml). After 5 min benzyl bromide (100 μ l, 144 mg, 842 μ mol, 2.9 eq) was added and the mixture stirred for 1 h at rt. After removal of the solvent *in vacuo* the residue was extracted with diethyl ether (10 ml) and filtered through a plug of silica gel (\emptyset 3 cm x 5 cm, *n*-pentane) to give the title compound as colourless crystals (81 mg, 242 μ mol, 84%) after evaporation of the solvent.

¹**H NMR** (300 MHz, CDCl₃): δ = 7.28 – 7.07 (m, 15 H, CH_{Ar}), 7.06 – 6.99 (m, 1 H, CH_{Ar}), 6.97 – 6.91 (m, 2 H, CH_{Ar}), 6.64 – 6.58 (m, 2 H, CH_{Ar}), 3.91 (s, 2 H, CH₂).

¹³**C NMR** (75 MHz, CDCl₃): δ = 146.7 (*ipso*-C_{CPh3}), 138.6 (*ipso*-C_{Bn}), 131.2 (*o*-CH_{Bn}), 129.9 (*o*-CH_{CPh3}), 127.7 (*m*-CH_{CPh3}), 127.4 (*m*-CH_{Bn}), 126.1 (*p*-CH_{Bn}), 126.0 (*p*-CH_{CPh3}), 58.7 (<u>C</u>Ph₃), 46.4 (<u>C</u>H₂Ph).

Ph₃**GeCH**₂**Ph**:^{S4b} Under an atmosphere of nitrogen **5** (62 mg, 165 μ mol, 1 eq) and **3b** (70 mg, 162 μ mol, 1 eq) were mixed in dry THF (5 ml). After 5 min benzyl bromide (83 mg, 485 μ mol, 3.0 eq) was added and the mixture stirred for 2 h at rt. After removal of the solvent *in vacuo* the residue was extracted with diethyl ether (3 ml) and filtered through a plug of silica gel (\emptyset 1 cm x 5 cm, *n*-pentane) to give the title compound in 90% purity (34 mg, 76 μ mol, 47%).

¹**H NMR** (300 MHz, CDCl₃): δ = 7.48 – 6.80 (m, 20 H, CH_{Ar}), 2.99 (s, 2 H, CH₂).

¹³**C NMR** (75 MHz, CDCl₃): δ = 139.1, 136.4, 135.3, 129.1, 128.9, 128.3 128.2, 124.6, 23.7 (CH₂).

Ph₃**Sn–CH**₂**Ph**:^{S4c} Under an atmosphere of nitrogen **5** (60 mg, 130 µmol, 1 eq) and **4b** (50 mg, 130 µmol, 1 eq) were mixed in dry toluene (8 ml). After 5 min benzyl bromide (50 µl, 72 mg, 421 µmol, 3.2 eq) was added and the mixture stirred for 1 h at rt. After removal of the solvent *in vacuo* the residue was extracted with diethyl ether (10 ml) and purified by chromatography on silica gel (\emptyset 1 cm x 15 cm, *n*-pentane; R_f = 0.1, *n*-pentane, silica gel) to give the title compound as colourless crystals (26 mg, 70 µmol, 57%) after evaporation of the solvent.

¹**H NMR** (300 MHz, CDCl₃): $\delta = 7.44 - 7.37$ (m, 9 H, CH_{Ar}), 7.36 - 7.28 (m, 6 H, CH_{Ar}), 7.10 - 7.01 (m, 3 H, CH_{Ar}), 6.88 - 6.82 (m, 2 H, CH_{Ar}), 2.93 (s, 2 H, CH₂).

¹³**C NMR** (75 MHz, CDCl₃): δ = 138.2 (*ipso*-C_{Bn}), 136.1 (*o/m*-CH_{Ph3Si}), 134.2 (*ipso*-CH_{Ph3Si}), 129.6 (*p*-CH_{Ph3Si}), 129.3 (*o/m*-CH_{Bn}), 128.1 (*o/m*-CH_{Bn}), 127.9 (*p*-CH_{Ph3Si}), 124.5 (*p*-CH_{Bn}), 23.6 (CH₂).

References:

- S1 Agilent Technologies, *CrysAlisPro*, Version 1.171.35.11, 2011.
- S2 B. A. Hunter, *Rietica for Windows*, Version 1.7.7, 1997.
- S3 R. W. G. Wyckhoff, Crystal Structures, 1963, 1, 7–83.
- S4 (a) M. I. Watkins and G. A. Olah, *J. Am. Chem. Soc.*, 1981, **103**, 6566-6575; (b) S. Kiyooka, T. Shibuya, F. Shiota and R. Fujiyama, *Bull. Chem. Soc. Jpn.*, 1989, **62**, 1361-1363; (c) C. Eaborn, A. R. Hancock and W. A. Stańczyk, *J. Organomet. Chem.*, 1981, **218**, 147-154.