Supporting Information

Assembly and spontaneous resolution of the chiral inorganic polyoxometalates-based frameworks via helical chains association

Qun Tang,^{*a*} Shuxia Liu,*^{*a*} Yiwei Liu,^{*a*} Shujun Li,^{*a*} Fengji Ma,^{*a*} Jianxin Li,^{*a*} Shengtian Wang^{*a*} and Chengzhan Liu *a*

Key Laboratory of Polyoxometalates Science of Ministry of Education, College of Chemistry, Northeast Normal University, Changchun City, Jilin, P. R. China 130024. E-mail: liusx@nenu.edu.cn Tel/ Fax: +86 43185099328

1

Fig. S1 The K^+ cation eightfold coordinates to four terminal oxygen atoms (blue) of four $[GeW_{12}O_{40}]$ ⁴⁻ polyoxoanions, two μ_2 -bridging oxygens (violet) of two $[GeW_{12}O_{40}]$ ⁴⁻ polyoxoanions, and two water molecules (blue gray).

Fig. S2 Schematic representations of mirror images of 3D chiral inorganic frameworks in compounds **1a** and **2a** (left), and **1b** and **2b** (right). (The handedness of some helices is illustrated as arrows). The K⁺ cation as a four-connected node, and each $[GeV_{12}O_{40}]^{4-}$ or $[SiW_{12}O_{40}]^{4-}$ as an eight-connected node.

Fig. S3 The IR spectra of the compound **1** (black) and the thermally activated form of **1** (red).

Fig. S4 The IR spectra of the compound **2** (black) and the thermally activated form of **2** (red).

Fig. S5 The TG curves of **1a** and **1b** exhibit one weight loss stages in the temperature ranges 20–600 °C. Heating rate: 10 deg min⁻¹, N₂ atmosphere.

Fig. S6 The TG curves of **2a** and **2b** exhibit one weight loss stages in the temperature ranges 20–600 °C. The weight loss of 6.78% (calcd. 6.64%) for **2a** and 6.69% (calcd. 6.64%) for **2b** at 150 °C, which correspond to the loss of all the crystallization and coordination water molecules. Heating rate: 10 deg min⁻¹, N_2 atmosphere.

Fig. S7 The XRPD patterns for simulated, as-synthesised, and desolvated samples of **1a**.

Fig. S8 The PXRD patterns for simulated, as-synthesised, and desolvated samples of **1b**.

Fig. S9 The PXRD patterns for simulated, as-synthesised, and desolvated samples of **2a**.

Fig. S10 The PXRD patterns for simulated, as-synthesised, and desolvated samples of **2b**.

Fig. S11 The influence of time on the stability of compound **1** in the aqueous solution. Conditions: the pH value that **1** was dissolved in water $(1 \times 10^{-5} \text{ mol L}^{-1})$ is 6.0.

Fig. S12 The influence of time on the stability of compound **2** in the aqueous solution. Conditions: the pH value that 2 was dissolved in water $(1 \times 10^{-5} \text{ mol L}^{-1})$ is 6.0.

Fig. S13 The water adsorption and desorption curves of **1** at 298 K

Fig. S14 Curve fitting of ethanol adsorption isotherm of **1** recorded at 298 K using Langmuir-Freundlich equation.

Fig. S15 Curve fitting of ethanol adsorption isotherm of **1** recorded at 308 K using Langmuir-Freundlich equation.

Fig. S16 Methanol and 1-propanol adsorption and desorption curves at 298 K for **1**.

Fig. S17 Cyclohexane, benzene, and toluene adsorption and desorption curves at 298 K for

1.

Fig. S18 The water adsorption and desorption curves of **2** at 298 K

Fig. S19 Methanol, ethanol, and 1-propanol adsorption and desorption curves at 298 K for **2**.

Fig. S20 Cyclohexane, benzene, and toluene adsorption and desorption curves at 298 K for

2.

			Adsorption amount 1 (mmol g^{-1}) 2 (mmol g^{-1}) 1 (molecules per formula unit) 2 (molecules per formula unit)	
water	6.42	6.24	57.75	56.19
methanol	4.19	4.21	37.69	37.89
ethanol	3.68	3.73	33.11	33.51
1-propanol	2.23	2.25	20.06	20.24
cyclohexane	1.49	1.50	13.45	13.50
benzene	2.16	2.13	19.47	19.21
toluene	1.36	1.33	12.25	11.98

Table S1 The VOCs adsorption properties of **1** and **2** at 298 K.

Estimation of adsorption enthalpy

The adsorption isotherms were fitted using the Langmuir-Freundlich equation instead of the more commonly used Langmuir equation. The Langmuir-Freundlich model gives a better fit over the entire measured pressure range, resulting in a more accurate prediction of the adsorption capacity at saturation. The calculation of the enthalpy of VOCs adsorption using Clausius-Clapeyron equation:

$$
\ln\left(\frac{P_1}{P_2}\right) = \Delta H_{ads} \times \frac{T_2 - T_1}{RT_1T_2}
$$
 (1)

P = pressure for isotherm *T* = temperature for isotherm $R = 8.315$ J K⁻¹ mol⁻¹

Equation **(1)** can be used as a function of the quantity of adsorbed to calculate the adsorption enthalpy. The pressure as a function of the amount of adsorbed was determined by using Langmuir-Freundlich fit for the adsorption isotherms.

$$
\frac{Q}{Q_m} = \frac{BP^{(1/t)}}{1 + BP^{(1/t)}}
$$
\n
$$
Q = \text{moles adsorbed}
$$
\n
$$
Q_m = \text{moles adsorbed at saturation}
$$
\n
$$
P = \text{pressure}
$$
\n
$$
B \text{ and } t = \text{constants.}
$$
\n(2)

Rearranging **(2)** to obtained:

$$
P = \left(\frac{Q/Q_m}{B - B Q/Q_m}\right)^t
$$
 (3)

Replacing *P* in equation **(1)**, the $\triangle H_{ads}$ can be calculated from the following formula:

$$
\Delta H_{ads} = \frac{RT_1T_2}{T_2 - T_1} \times \ln \frac{\left(\frac{Q/Q_{m1}}{B_1 - B_1Q/Q_{m1}}\right)^t}{\left(\frac{Q/Q_{m2}}{B_2 - B_2Q/Q_{m2}}\right)^t}
$$
(4)

References

- 1. M. Dincă, J.R. Long, J. Am. Chem. Soc. 127 (2005) 9376–9381.
- 2. S.Q. Ma, H.C. Zhou, J. Am. Chem. Soc. 128 (2006) 11734–11735.
- 3. B. Chen, X. Zhao, A. Putkham, K. Hong, E.B. Lobkovsky, E.J. Hurtado, A.J. Fletcher, K.M.

Thomas, J. Am. Chem. Soc. 130 (2008), 6411–6423.