Observation of cation ordering and anion-mediated structure selection among

the layered double hydroxides of Cu(II) and Cr(III)

Jayanthi Kumar, P. Vishnu Kamath^{*}

Department of Chemistry, Central College, Bangalore University, Bangalore 560 001, India

*To whom correspondence should be addressed. E-mail: vishnukamath8@hotmail.com

Supporting Information

SI. 1 PXRD pattern of the [Cu-Cr-Cl] LDH obtained by coprecipitation at pH 5, T \approx 27 °C.

SI.2 IR spectrum of [Cu-Cr-A] LDHs

The IR spectra of [Cu-Cr] LDHs show a broad absorption at 3300 - 3400 cm⁻¹ due to O-H stretching vibration of the hydroxyl groups of the brucite-like sheets and water in the interlayer region. The O-H bending vibration of the interlayer water is observed at 1610 - 1635 cm⁻¹. There is no absorption at 1356 cm⁻¹, indicating the complete absence of carbonate ions in LDHs comprising other anions.

[Cu-Cr-X] (X = Cl, Br) LDH: the IR spectra of halides intercalated LDH has no absorption in the range of 900 - 1500 cm⁻¹, as expected of a halide LDH.

[**Cu-Cr-SO**₄] **LDH:** IR spectrum shows different vibrational modes of sulfate where v_3 and v_4 splits into two peaks. The two doublets appear at 1139 and 1104 cm⁻¹ and 612 and 561 cm⁻¹, respectively. The v_1 mode is activated and appears at 991 cm⁻¹. The v_2 mode which is expected to be at 450 cm⁻¹ is not seen as a separate band because it overlaps with the sharp bands at 400 - 600 cm⁻¹ that arise from the lattice vibrations. All these vibrations are characteristic of SO₄²⁻ being in C_{3v} coordination symmetry.

[Cu-Cr-CO₃] LDH: The carbonate ion intercalated LDH exhibits three IR active modes corresponding to the out-of-plane bending v_2 at 864 cm⁻¹; antisymmetric symmetric stretching v_3 at 1348 cm⁻¹ and in-plane stretching v_4 at 671 cm⁻¹. This indicates that the interlayer carbonate is in the D_{3h} symmetry.

[**Cu-Cr-IO₃**] **LDH:** IR spectrum of iodate intercalated LDH shows a peak at 938 cm⁻¹ and a sharp peak around 733 cm⁻¹ which can be assigned to v_1 and v_2 modes of iodate ion indicates that the interlayer is C_{3v} . The frequencies v_1 and v_3 vibrations are near to each other, hence they are usually observed as one strong band. Other vibration frequencies overlap with M-O-H bending mode and hence cannot be distinguished in the IR spectrum.

[Cu-Cr-BrO₃] LDH: IR spectrum of bromate intercalated LDH shows a peak at 925 cm⁻¹ and a sharp peak around 738 cm⁻¹ which can be assigned to v_1 and v_2 modes of bromate ion indicates that the interlayer is C_{3v} . The frequencies v_1 and v_3 vibrations are near to each other, hence they are usually observed as one strong band. Other vibration frequencies overlap with M-O-H bending mode and hence cannot be distinguished in the IR spectrum.

SI.3 TG-DTG curves of [Cu-Cr-A] LDHs

TG-DTG data show a continuous mass loss with many points of inflection. The total mass loss observed from 30-800 °C is used for computing the intercalated water content.