Electronic Supporting Information

Oxidation of thiocyanate with H_2O_2 catalyzed by $[Ru^{III}(edta)(H_2O)]^{+}$

Debabrata Chatterjee,* Barnali Paul and Rupa Mukherjee

Figure S1. (a) Absorption vs. time trace for the oxidation of thiocyanate with H_2O_2 at varied $[Ru^{III}(edta)(SCN)]^{2-}$ concentration and (b) plot of rate vs. [Ru-complex] at, pH 4.3 (1 mM acetate buffer) and 25 °C. $[H_2O_2] = 20 \text{ mM}$

Table S1 Rate data (used in Figure S1b) estimated from Figure S1a at varied [Ru^{III}]

[Ru ^{III}], M	10^{6} Rate, Ms ⁻¹
5 x 10 ⁻⁵ M	1.31 ± 0.02
1 x 10 ⁻⁴ M	2.42 ± 0.02
2 x 10 ⁻⁴ M	4.83 ± 0.04
3 x 10 ⁻⁴ M	7.11 ± 0.04
4 x 10 ⁻⁴ M	9.32 ± 0.05

Figure S2. Time vs. absorption trace for the oxidation of thiocyanate with at varied $[H_2O_2]$ at 25 °C. $[Ru] = 2.5 \times 10^{-4} \text{ M}$, $[SCN^-] = 2.5 \times 10^{-4} \text{ M}$, pH 4.3 (1 mM acetate buffer)

Table S2Rate data (estimated from Figure S2) at various H_2O_2 concentration

$[H_2O_2], M$	Rate, $M s^{-1}$
2.5 x 10 ⁻³	$(0.24 \pm 0.004) \ge 10^{-6}$
5.0 x 10 ⁻³	$(0.67 \pm 0.006) \times 10^{-6}$
1.0 x 10 ⁻²	(2.19±0.02) x 10 ⁻⁶
1.5 x 10 ⁻²	$(3.73\pm0.02) \times 10^{-6}$
2.0 x 10 ⁻²	$(5.19\pm0.03) \times 10^{-6}$
2.5 x 10 ⁻²	$(7.11 \pm 0.03) \times 10^{-6}$
3.0 x 10 ⁻²	$(8.61 \pm 0.04) \times 10^{-6}$

Figure S3. Time vs. absorption trace for the reaction of SCN⁻ (0.02M) with $[Ru^{V}(edta)O]^{-}$ (preformed by reacting $[Ru^{III}(edta)(H_2O)]^{-}$ and H_2O_2) at 25 °C and pH = 4.3. $[Ru^{III}] = 1.0 \times 10^{-4}$ M, $[H_2O_2] = 1.0 \times 10^{-4}$ M, $[SCN^{-}] = 0.02$ M.

Figure S4. Results of ESI-MS studies for the oxidation of SCN⁻ by the Ru(edta)/H₂O₂ system. (a) Reaction mixture was analyzed just after disappearance of the red colour (after 200 sec) and b) after 1 h. [Ru(edta)(H₂O)⁻] = 2.0 x 10⁻⁴ M, [SCN⁻] = 2 x 10⁻³ M, [H₂O₂] = 2 x 10⁻² M, pH = 4.3 adjusted by (NaOH/HClO₄).

Table S3Rate data (for Figure S5) at various temperature

Temp / °C	k, $M^{-1}s^{-1}$
15	1.78 ± 0.02
20	2.33 ± 0.03
25	3.11 ± 0.04
30	4.23 ± 0.04

Figure S6. Effect of pH on the time vs. absorption trace for the oxidation of thiocyanate with at 25 °C. [Ru] = $2.5 \times 10^{-4} \text{ M}$, [SCN⁻] = $5 \times 10^{-4} \text{ M}$, [H₂O₂] = 20 mM

Table S4	Rate data	(estimated	from	Figure S	6) at	various	pН
----------	-----------	------------	------	-----------------	---------------	---------	----

pН	Rate x 10^6 , M s ⁻¹
3.4	1.12 ± 0.04
4.3	3.71 ± 0.05
5.2	3.68 ± 0.06
5.6	3.24 ± 0.06
6.2	2.47 ± 0.05
6.7	1.44 ± 0.04
7.1	0.85 ± 0.03
7.5	0.74 ± 0.03
8.1	0.46 ± 0.02