Supplementary information for

Dávid Árus, Ágnes Dancs, Nóra Veronika Nagy, Tamás Gajda^{*}

A comparative study on the possible zinc binding sites of the human ZnT3 zinc transporter protein

Table S1: EPR data of the complexes formed in the copper(II)- L^1 system

Species	g _{xx}	g _{yy}	g _{zz}	A _{xx} /G	A _{yy} /G	A _{zz} /G
Cu^{2+}	2.082	2.082	2.425	8.3	8.3	111.5
CuHL ¹	2.062	2.062	2.330	10.0	10.0	140.0
CuL^1	2.058	2.058	2.274	23.8	23.8	165.2
CuH_1L^1	2.051	2.051	2.240	32.0	32.0	180.0
CuH_2L^1	2.036	2.044	2.209	15.4	33.2	184.5
$CuH_{-3}L^1$	2.031	2.046	2.188	20.1	35.2	192.8
$Cu_2H_2L^1$				55.6		
$Cu_2H_{-3}L^1$				70.0		
$Cu_2H_4L^1$				63.5		
$\frac{\mathrm{Cu}_{2}\mathrm{H}_{-5}\mathrm{L}^{1}}{\mathrm{Cu}_{2}\mathrm{H}_{-6}\mathrm{L}^{1}}$				47.3		

HPLC Certificate

Figure S1. HPLC chromatogram and Maldi-TOF spectrum of L^1

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is O The Royal Society of Chemistry 2013

HPLC Certificate

Mass Spectrometry Certificate

Figure S2. HPLC chromatogram and ESI-MS spectrum of L^2

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is The Royal Society of Chemistry 2013

HPLC Certificate

Figure S3. HPLC chromatogram and MALDI-TOF spectrum of L^3

5.40

Figure S4 : The aliphatic part of the ¹H NMR spectra of L^1 as a function of pH in the absence (**A**) and presence (**B**) of zinc(II) (T = 298 K, [L^1] = 0.0046 M, [Zn²⁺] = 0.00425 M).

Figure S5: The ¹H NMR spectra of L^1 at pH = 7.0 as a function of zinc(II) concentration (T= 298 K).

Figure S6: ¹H NMR spectra of L^3 as a function of zinc(II) concentration at pH = 7.0 (T=298 K)

Figure S7: pH-dependent CD spectra of the nickel(II)- L^1 system ([L^1]= 0.0007 M, [Ni²⁺]= 0.00035 M, T = 298 K, I= 0.1 M NaCl). The insert shows the pH dependence of the CD intensities at 280 (**■**) and 423 nm (**▲**).

Figure S8: pH-dependent UV-Vis spectra of Ni(II)- L^1 system, and the absorption measured at 450 nm as a function of pH ([L^1]= 0.001 M, [Ni²⁺]= 0.0005 M, T = 298 K, I= 0.1 M NaCl),

Figure S9: pH-dependent CD spectra of the nickel(II)- L^3 system ([L^3] = 0.0007 M, [Ni²⁺] = 0.0007 M, T = 298 K, I = 0.1 M NaCl). The insert shows the pH dependence of the CD intensities at 312 (\blacklozenge) and 435 nm (\blacktriangle).

Figure S10: pH-dependent CD spectra of the nickel(II)- L^3 system ([L^3] = 0.00064 M, [Ni²⁺] = 0.00122 M, T = 298 K, *I* = 0.1 M NaCl). The insert shows the pH dependence of the CD intensities at 316 (\Box), 433 (\Diamond) and 520 (\circ) nm.

Figure S11: UV-Vis spectra of the copper(II)- L^1 system as a function of pH ([L^1]= 0.0013 M, [Cu²⁺]= 0.0013 M, T = 298 K, I= 0.1 M NaCl). The insert shows the pH-dependence of absorbances at 550 (**■**) and 650 nm(\blacklozenge).

Figure S12: CD spectra of the copper(II)- L^1 system as a function of pH ([L^1]=[C u^{2+}]=8×10⁻⁴ M, *I* = 0.1 M NaCl , T = 298 K, the insert shows the absorbances at λ = 335(\circ), 490(\Box) and 620(\Diamond) nm).

Figure S13: The measured (black) and calculated (red) anisotropic EPR spectra of the copper(II)-L1 system as a function of pH (A: $[Cu^{2+}] = 0.00130$ M, $[L^1] = 0.00131$ M; B: $[Cu^{2+}] = 0.00213$ M, $[L^1] = 0.00118$ M, T = 80 K).

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is O The Royal Society of Chemistry 2013

Figure S14: The calculated individual anisotropic EPR spectra of the specieses formed in the $copper(II)-L^1$ system

Figure S15: UV-Vis spectra of the copper(II)- L^1 system at 1:2 L^1/Cu^{2+} ratio as a function of pH ([Cu^{2+}] = 0.00241 M, [L^1] = 0.00127 M, T = 298 K, the insert shows the pH-dependence of the absorbances at 375 and 550 nm).

Figure S16: CD spectra of the copper(II)-L¹ system at 1:2 L¹/Cu²⁺ ratio as a function of pH pH ([L¹]=0.000697 M, [Cu²⁺]=0.00132 M, I = 0.1 M NaCl , T = 298 K, the insert shows the absorbances at λ = 345(\circ), 490(\Box) and 645(\diamond) nm).