Supplementary Information Appendix I

(A) <u>ESI-MS spectra (Figs. S1.1-S1.4)</u> Figure S1.1 ESI-MS spectrum of [Cu(phen)(L-Threo)(H₂O)]NO₃ 1

Figure S1.2 ESI-MS spectrum of [Cu(phen)(D-Threo)(H2O)]NO3 2

Figure S1.3 ESI-MS spectrum of L-[Cu(phen)(5MeOCA)(H2O)]NO3 3

Figure 1.4 ESI-MS spectrum of D-[Cu(phen)(5MeOCA)(H2O)]NO3 4

Supplementary Fig. S2 Fluorescence spectra of 1×10^{-5} M 1 - 5 in water-methanol (1:1 v/v). Insert shows clearly the FL spectra of 1 - 4.

(B) <u>Restriction Enzyme inhibition by CuCl₂, [Cu(phen)Cl₂], and copper(II) complexes 1-4</u> (Figs. S3.1-S3.6)

Figure S3.1 RE inhibition by CuCl₂. Electrophoresis results of incubating λ DNA (0.5 µg/µL) with 5 unit of restriction enzyme in the presence or absence of 50 µM CuCl₂ for 2 hours at 37°C.

(a) Lane 1, 1kb DNA ladder; Lane 2, λ DNA alone (0.5 µg); Lane 3, λ DNA + 50 µM CuCl₂; Lane 4, λ DNA + 5 unit Tsp 509I (control); Lane 5, λ DNA + 5 unit Tsp 509I + 50 µM CuCl₂; Lane 6, λ DNA + 5 unit Hae III (control); Lane 7, λ DNA + 5 unit Hae III + 50 µM CuCl₂; Lane 8, λ DNA + 5 unit Sal I (control); Lane 9, λ DNA + 5 unit Sal I + 50 µM CuCl₂; Lane 10, λ DNA + 5 unit Pst I (control); Lane 11, λ DNA + 5 unit Pst I + 50 µM CuCl₂; Lane 12, λ DNA + 5 unit Pvu II (control); Lane 13, λ DNA + 5 unit Pvu II + 50 µM CuCl₂; Lane 14, λ DNA + 5 unit Sca I (control); Lane 15, λ DNA + 5 unit Sca I + 50 µM CuCl₂; Lane 16, 1kb DNA ladder.

(b) Lane 1, 1kb DNA ladder; Lane 2, λ DNA alone (0.5 µg); Lane 3, λ DNA + 50 µM CuCl₂; Lane 4, λ DNA + 5 unit Ssp I (control); Lane 5, λ DNA + 5 unit Ssp I + 50 µM CuCl₂; Lane 6, λ DNA + 5 unit Ase I (control); Lane 7, λ DNA + 5 unit Ase I + 50 µM CuCl₂; Lane 8, λ DNA + 5 unit Mun I (control); Lane 9, λ DNA + 5 unit Mun I + 50 µM CuCl₂; Lane 10, λ DNA + 5 unit EcoR I (control); Lane 11, λ DNA + 5 unit EcoR I + 50 µM metal salt; Lane 12, λ DNA + 5 unit NdeI (control); Lane 13, λ DNA + 5 unit NdeI + 50 µM CuCl₂; Lane 14, λ DNA + 5 unit Bst 11071 (control); Lane 15, λ DNA + 5 unit Bst 11071 + 50 µM CuCl₂; Lane 14, λ DNA + 5 unit Bst 11071 (control); Lane 15, λ DNA + 5 unit Bst 11071 + 50 µM CuCl₂; Lane 16, 1kb DNA ladder.

Figure S3.2 RE inhibition by [Cu(phen)Cl₂]. Electrophoresis results of incubating λ DNA (0.5 µg/µL) with 5 unit of restriction enzyme in the presence or absence of 50 µM [Cu(phen)Cl₂] for 2 hours at 37°C.

(a) Lane 1, 1kb DNA ladder; Lane 2, λ DNA alone (0.5 µg); Lane 3, λ DNA + 50 µM [Cu(phen)Cl₂]; Lane 4, λ DNA + 5 unit Tsp 509I (control); Lane 5, λ DNA + 5 unit Tsp 509I + 50 µM [Cu(phen)Cl₂]; Lane 6, λ DNA + 5 unit Hae III (control); Lane 7, λ DNA + 5 unit Hae III + 50 µM [Cu(phen)Cl₂]; Lane 8, λ DNA + 5 unit Sal I (control); Lane 9, λ DNA + 5 unit Sal I + 50 µM [Cu(phen)Cl₂]; Lane 10, λ DNA + 5 unit Pst I (control); Lane 11, λ DNA + 5 unit Pst I + 50 µM [Cu(phen)Cl₂]; Lane 12, λ DNA + 5 unit Pvu II (control); Lane 13, λ DNA + 5 unit Pvu II + 50 µM [Cu(phen)Cl₂]; Lane 14, λ DNA + 5 unit Sca I (control); Lane 15, λ DNA + 5 unit Sca I + 50 µM [Cu(phen)Cl₂]; Lane 16, 1kb DNA ladder.

(b) Lane 1, 1kb DNA ladder; Lane 2, λ DNA alone (0.5 µg); Lane 3, λ DNA + 50 µM [Cu(phen)Cl₂]; Lane 4, λ DNA + 5 unit Ssp I (control); Lane 5, λ DNA + 5 unit Ssp I + 50 µM [Cu(phen)Cl₂]; Lane 6, λ DNA + 5 unit Ase I (control); Lane 7, λ DNA + 5 unit Ase I + 50 µM [Cu(phen)Cl₂]; Lane 8, λ DNA + 5 unit Mun I (control); Lane 9, λ DNA + 5 unit Mun I + 50 µM [Cu(phen)Cl₂]; Lane 10, λ DNA + 5 unit EcoR I (control); Lane 11, λ DNA + 5 unit EcoR I + 50 µM [Cu(phen)Cl₂]; Lane 10, λ DNA + 5 unit EcoR I (control); Lane 11, λ DNA + 5 unit EcoR I + 50 µM [Cu(phen)Cl₂]; Lane 12, λ DNA + 5 unit NdeI (control); Lane 13, λ DNA + 5 unit NdeI + 50 µM [Cu(phen)Cl₂]; Lane 14, λ DNA + 5 unit Bst 11071 (control); Lane 15, λ DNA + 5 unit Bst 11071 + 50 µM [Cu(phen)Cl₂]; Lane 16, 1kb DNA ladder.

Figure S3.3 RE inhibition by **1.** Electrophoresis results of incubating λ DNA (0.5 µg/µL) with 5 unit of restriction enzyme in the presence or absence of 50 µM **1** for 2 hours at 37°C. (a) Lane 1, 1kb DNA ladder; Lane 2, λ DNA alone (0.5 µg); Lane 3, λ DNA + 50 µM **1**; Lane 4, λ DNA + 5 unit Tsp 509I (control); Lane 5, λ DNA + 5 unit Tsp 509I + 50 µM **1**; Lane 6, λ DNA + 5 unit Hae III (control); Lane 7, λ DNA + 5 unit Hae III + 50 µM **1**; Lane 8, λ DNA + 5 unit Sal I (control); Lane 9, λ DNA + 5 unit Sal I + 50 µM **1**; Lane 10, λ DNA + 5 unit Pst I (control); Lane 11, λ DNA + 5 unit Pst I + 50 µM **1**; Lane 12, λ DNA + 5 unit Sca I (control); Lane 13, λ DNA + 5 unit Pvu II + 50 µM **1**; Lane 14, λ DNA + 5 unit Sca I (control); Lane 15, λ DNA + 5 unit Sca I + 50 µM **1**; Lane 16, 1kb DNA ladder.

(b) Lane 1, 1kb DNA ladder; Lane 2, λ DNA alone (0.5 µg); Lane 3, λ DNA + 50 µM 1; Lane 4, λ DNA + 5 unit Ssp I (control); Lane 5, λ DNA + 5 unit Ssp I + 50 µM 1; Lane 6, λ DNA + 5 unit Ase I (control); Lane 7, λ DNA + 5 unit Ase I + 50 µM 1; Lane 8, λ DNA + 5 unit Mun I (control); Lane 9, λ DNA + 5 unit Mun I + 50 µM 1; Lane 10, λ DNA + 5 unit EcoR I (control); Lane 11, λ DNA + 5 unit EcoR I + 50 µM 1; Lane 12, λ DNA + 5 unit NdeI (control); Lane 13, λ DNA + 5 unit NdeI + 50 µM 1; Lane 14, λ DNA + 5 unit Bst 11071 (control); Lane 15, λ DNA + 5 unit Bst 11071 + 50 µM 1; Lane 16, 1kb DNA ladder.

Figure S3.4 RE inhibition by **2**.

Electrophoresis results of incubating λ DNA (0.5 μ g/ μ L) with 5 unit of restriction enzyme in the presence or absence of 50 μ M **2** for 2 hours at 37°C.

(a) Lane 1, 1kb DNA ladder; Lane 2, λ DNA alone (0.5 µg); Lane 3, λ DNA + 50 µM 2; Lane 4, λ DNA + 5 unit Tsp 509I (control); Lane 5, λ DNA + 5 unit Tsp 509I + 50 µM 2; Lane 6, λ DNA + 5 unit Hae III (control); Lane 7, λ DNA + 5 unit Hae III + 50 µM 2; Lane 8, λ DNA + 5 unit Sal I (control); Lane 9, λ DNA + 5 unit Sal I + 50 µM 2; Lane 10, λ DNA + 5 unit Pst I (control); Lane 11, λ DNA + 5 unit Pst I + 50 µM 2; Lane 12, λ DNA + 5 unit Pvu II (control); Lane 13, λ DNA + 5 unit Pvu II + 50 µM 2; Lane 14, λ DNA + 5 unit Sca I (control); Lane 15, λ DNA + 5 unit Sca I + 50 µM 2; Lane 16, 1kb DNA ladder.

(b) Lane 1, 1kb DNA ladder; Lane 2, λ DNA alone (0.5 µg); Lane 3, λ DNA + 50 µM 2; Lane 4, λ DNA + 5 unit Ssp I (control); Lane 5, λ DNA + 5 unit Ssp I + 50 µM 3; Lane 6, λ DNA + 5 unit Ase I (control); Lane 7, λ DNA + 5 unit Ase I + 50 µM 3; Lane 8, λ DNA + 5 unit Mun I (control); Lane 9, λ DNA + 5 unit Mun I + 50 µM 2; Lane 10, λ DNA + 5 unit EcoR I (control); Lane 11, λ DNA + 5 unit EcoR I + 50 µM 2; Lane 12, λ DNA + 5 unit NdeI (control); Lane 13, λ DNA + 5 unit NdeI + 50 µM 2; Lane 14, λ DNA + 5 unit Bst 11071 (control); Lane 15, λ DNA + 5 unit Bst 11071 + 50 µM 2; Lane 16, 1kb DNA ladder.

Figure S3.5 RE inhibition by **3**.

Electrophoresis results of incubating λ DNA (0.5 μ g/ μ L) with 5 unit of restriction enzyme in the presence or absence of 50 μ M **3** for 2 hours at 37°C.

(a) Lane 1, 1kb DNA ladder; Lane 2, λ DNA alone (0.5 µg); Lane 3, λ DNA + 50 µM **3**; Lane 4, λ DNA + 5 unit Tsp 509I (control); Lane 5, λ DNA + 5 unit Tsp 509I + 50 µM **3**; Lane 6, λ DNA + 5 unit Hae III (control); Lane 7, λ DNA + 5 unit Hae III + 50 µM **3**; Lane 8, λ DNA + 5 unit Sal I (control); Lane 9, λ DNA + 5 unit Sal I + 50 µM **3**; Lane 10, λ DNA + 5 unit Pst I (control); Lane 11, λ DNA + 5 unit Pst I + 50 µM **3**; Lane 12, λ DNA + 5 unit Pvu II (control); Lane 13, λ DNA + 5 unit Pvu II + 50 µM **3**; Lane 14, λ DNA + 5 unit Sca I (control); Lane 15, λ DNA + 5 unit Sca I + 50 µM **3**; Lane 16, 1kb DNA ladder.

(b) Lane 1, 1kb DNA ladder; Lane 2, λ DNA alone (0.5 µg); Lane 3, λ DNA + 50 µM 3; Lane 4, λ DNA + 5 unit Ssp I (control); Lane 5, λ DNA + 5 unit Ssp I + 50 µM 3; Lane 6, λ DNA + 5 unit Ase I (control); Lane 7, λ DNA + 5 unit Ase I + 50 µM 3; Lane 8, λ DNA + 5 unit Mun I (control); Lane 9, λ DNA + 5 unit Mun I + 50 µM 3; Lane 10, λ DNA + 5 unit EcoR I (control); Lane 11, λ DNA + 5 unit EcoR I + 50 µM 3; Lane 12, λ DNA + 5 unit NdeI (control); Lane 13, λ DNA + 5 unit NdeI + 50 µM 3; Lane 14, λ DNA + 5 unit Bst 11071 (control); Lane 15, λ DNA + 5 unit Bst 11071 + 50 µM 3; Lane 16, 1kb DNA ladder.

Figure S3.6 RE inhibition by **4**.

Electrophoresis results of incubating λ DNA (0.5 μ g/ μ L) with 5 unit of restriction enzyme in the presence or absence of 50 μ M 4 for 2 hours at 37°C.

(a) Lane 1, 1kb DNA ladder; Lane 2, λ DNA alone (0.5 µg); Lane 3, λ DNA + 50 µM 4; Lane 4, λ DNA + 5 unit Tsp 509I (control); Lane 5, λ DNA + 5 unit Tsp 509I + 50 µM 4; Lane 6, λ DNA + 5 unit Hae III (control); Lane 7, λ DNA + 5 unit Hae III + 50 µM 4; Lane 8, λ DNA + 5 unit Sal I (control); Lane 9, λ DNA + 5 unit Sal I + 50 µM 4; Lane 10, λ DNA + 5 unit Pst I (control); Lane 11, λ DNA + 5 unit Pst I + 50 µM 4; Lane 12, λ DNA + 5 unit Pvu II (control); Lane 13, λ DNA + 5 unit Pvu II + 50 µM 4; Lane 14, λ DNA + 5 unit Sca I (control); Lane 15, λ DNA + 5 unit Sca I + 50 µM 4; Lane 16, 1kb DNA ladder.

(b) Lane 1, 1kb DNA ladder; Lane 2, λ DNA alone (0.5 µg); Lane 3, λ DNA + 50 µM 4; Lane 4, λ DNA + 5 unit Ssp I (control); Lane 5, λ DNA + 5 unit Ssp I + 50 µM 4; Lane 6, λ DNA + 5 unit Ase I (control); Lane 7, λ DNA + 5 unit Ase I + 50 µM 4; Lane 8, λ DNA + 5 unit Mun I (control); Lane 9, λ DNA + 5 unit Mun I + 50 µM 4; Lane 10, λ DNA + 5 unit EcoR I (control); Lane 11, λ DNA + 5 unit EcoR I + 50 µM 4; Lane 12, λ DNA + 5 unit NdeI (control); Lane 13, λ DNA + 5 unit NdeI + 50 µM 4; Lane 14, λ DNA + 5 unit Bst 11071 (control); Lane 15, λ DNA + 5 unit Bst 11071 + 50 µM 4; Lane 16, 1kb DNA ladder.

(C) FL spectra of BSA in the absence and presence of 1-4 (Figs. S4.1-S4.4 (a), (b), (c))

The experiment to obtain the FL emission spectra of BSA in the absence and presence of increasing concentration of 1-4 [0 (a), 2 (b), 4 (c), 10 (d), 20 (e), 40 (f), 100 (g), 200 (h) and 400 (i) μ M] were done in triplicate. See **Appendix II**.

(D) Stern-Volmer plots of Fo/F vs [Q] for 1-4 (Figs. S5.1-S5.4)

Figs. S5.1-S5.4 Stern-Volmer plots of Fo/F vs [Q] for 1-4

(E) Plots of $log(\Delta F/F)$ vs log[Q] for **1-4** (Figs. S6.1-S6.4)

Figs. S6.1-S6.4 Plots of $log(\Delta F/F)$ vs log[Q] for 1-4.

(F) <u>UV spectra of BSA in absence and presence of increasing concentration of 1-4 (Figs. S671-S7.4)</u>

Figures S7.1-S7.4. Absorption spectra of BSA in the absence (h) and presence of increasing concentration [2 (a), 4 (b), 10 (c), 20 (d), 30 (e), 40 (f) and 50 μ M (g)] of copper(II) complexes (1-4). Concentration of BSA alone in the absence of complex was 32.5 μ M (h).

(G) Synchronous FL spectra of BSA in the absence (*a*) and presence of increasing concentration [2 (*b*), 4 (*c*), 10 (*d*), 20 (*e*), 40 (*f*), 100 (*g*), 200 (*h*) and 400 (*i*) μ M] of **1-4** at (a) $\Delta\lambda = 15$ nm (tyrosine); (b) $\Delta\lambda = 60$ nm (tryptophan) (Figs. S8.1-S8.4 (a) and (b))

Fig. S8.1(b) for 1

Fig. 8.2(b) for **2**

Fig. 8.3(b) for **3**

Fig. S8.4(b) for **4**

Figs. S8.1-S8.4 Synchronous FL spectra of BSA in the absence (*a*) and presence of increasing concentration of 1-4 [2 (*b*), 4 (*c*), 10 (*d*), 20 (*e*), 40 (*f*), 100 (*g*), 200 (*h*) and 400 (*i*) μ M] at (a) $\Delta\lambda = 15$ nm (tyrosine); (b) $\Delta\lambda = 60$ nm (tyrophan)

Fig. S9 Comparison of Trp134 and Trp213 binding sites. The **Trp134-binding site** (Top) (Red = Trp134; blue = Tyr residue) has Trp134 with nearby Tyr residues (140, 142, 148, 149, 153). Trp134 is located in the hydrophobic pocket of subdomain IA near the protein surface. **Trp213-binding site** (bottom) containsTrp213 with no nearby Tyr residues but has charged Arg and Asp residues (not shown). Trp213 is in the hydrophobic core of subdomain IIA

<u>Supplementary Tables S1 and S2</u> Crystallographic data and selected bond lengths and angles of **3** and **4**

Table S1 Crystal data and structure refinement for 3 and 4				
	3	4		
Empirical formula	C ₁₇ H _{19,25} N ₄ O _{7,63} Cu	C ₁₇ H _{19,25} N ₄ O _{7,63} Cu		
Formula weight	465.15	465.15		
Temperature, K	103(2)	100(2)		
Wavelength, Å	0.71073	0.71073		
Crystal system	Triclinic	Triclinic		
Space group	P1	P1		
Unit cell dimensions	$a = 7.6300(4) \text{ Å} \alpha = 81.2860(10)^{\circ}$	$a = 7.6383(3)$ Å $\alpha = 81.250(2)^{\circ}$		
	$b = 10.8699(7) \text{ Å} \beta = 84.1770(10)^{\circ}$	$b = 10.8787(4)$ Å $\beta = 84.085(2)$ °		
	$c = 11.7670(7) \text{ Å } \gamma = 75.6260(10)^{\circ}$	$c = 11.7750(4) \text{ Å} \gamma = 75.541(2) \circ$		
Volume, Å ³	932.38(10)	934.26(6)		
Ζ	2	2		
Density (calculated), mg/m ³	1.657	1.654		
Absorption coefficient, mm ⁻¹	1.226	1.223		
<i>F</i> (000)	479	479		
Crystal size, mm ³	0.40 x 0.20 x 0.20	0.40 x 0.38 x 0.20		
θ range for data collection	2.45 to 30.56°	2.45 to 26.37°		
Index ranges	$-7 \le h \le 9, -13 \le k \le 13, -14 \le l \le$	$-9 \le h \le 9, -13 \le k \le 13, -14 \le l \le$		
	14	14		
Reflections collected	11702	25521		
Independent reflections	5712 [$R(int) = 0.0456$]	6572[R(int) = 0.0440]		
Absorption correction	Multi-scan	Multi-scan		
Max. and min. transmission	0.7916 and 0.6399	0.7920 and 0.6404		
Refinement method	Full-matrix least-squares on F^2	Full-matrix least-squares on F^2		
Data / restraints / parameters	5984 / 3 / 549	6972 / 17 / 557		
Goodness-of-fit on F2	1.043	1.074		
Final R indices $[I > 2\sigma(I)]$	$R_1 = 0.0272, wR_2 = 0.0703$	$R_1 = 0.0367, wR_2 = 0.0938$		
R indices (all data)	$R_1 = 0.0290, wR_2 = 0.0714$	$R_1 = 0.0337, wR_2 = 0.0873$		
Largest diff. peak and hole,	0.771 and -0.586	0.717 and -0.689		
e Å-3				

Tables S2.1 and S2.2 Selected bond lengths and angles for **3** and **4**.

	Bond	lengths (Å)	
C(1) – O(2)	1.222 (5)	C(5) – O(3)	1.414 (4)
C(1) - O(1)	1.270 (4)	C(5) - N(1)	1.473 (4)
C(1) - C(2)	1.529 (4)	Cu(1) - O(1)	1.932 (3)
C(2) - N(1)	1.485 (4)	Cu(1) - N(3)	1.992 (4)
C(2) - C(3)	1.546 (4)	Cu(1) - N(1)	2.002 (3)
C(3) - O(3)	1.422 (4)	Cu(1) - N(2)	2.013 (3)
C(3) – C(4)	1.503 (5)	Cu(1) - O(4)	2.285 (3)
	Bond	l angles (°)	
O(2) - C(1) - O(1)	124.5 (3)	O(1) - Cu(1) - N(3)	92.34 (13)
O(2) - C(1) - C(2)	118.3 (3)	O(1) - Cu(1) - N(1)	85.15 (12)
O(1) - C(1) - C(2)	117.1 (3)	N(3) - Cu(1) - N(1)	177.15 (15)
N(1) - C(2) - C(1)	111.2 (3)	O(1) - Cu(1) - N(2)	169.35 (13)
N(1) - C(2) - C(3)	104.6 (3)	N(3) - Cu(1) - N(2)	82.67 (14)
C(1) - C(2) - C(3)	112.1 (3)	N(1) - Cu(1) - N(2)	99.59 (13)
O(3) - C(3) - C(4)	109.4 (3)	O(1) - Cu(1) - O(4)	88.69 (10)
O(3) - C(3) - C(2)	104.0 (2)	N(3) - Cu(1) - O(4)	95.12 (12)
C(4) - C(3) - C(2)	114.7 (3)	N(1) - Cu(1) - O(4)	86.18 (11)
O(3) - C(5) - N(1)	104.9 (3)	N(2) - Cu(1) - O(4)	101.08 (11)
C(5) - N(1) - C(2)	104.2 (3)	C(5) - O(3) - C(3)	105.3 (2)
C(5) - N(1) - Cu(1)	120.7 (2)	C(1) - O(1) - Cu(1)	114.9 (2)
C(2) - N(1) - Cu(1)	106.9 (2)		

Table S2.1 Selected bond lengths (Å) and angles (°) for ${\bf 3}$

Table S2.2: Selected bond lengths (Å) and angles ($^{\circ}$) for 4					
Bond lengths (Å)					
C(1A) - O(2A)	1.229 (5)	C(5A) – O(3A)	1.415 (4)		
C(1A) - O(1A)	1.272 (5)	C(5A) - N(1A)	1.470 (5)		
$\mathrm{C(1A)}-\mathrm{C(2A)}$	1.532 (5)	Cu(1A) - O(1A)	1.932 (3)		
C(2A) - N(1A)	1.484 (5)	Cu(1A) - N(3A)	1.990 (4)		
C(2A) - C(3A)	1.545 (5)	Cu(1A) - N(1A)	2.005 (3)		
C(3A) - O(3A)	1.426 (4)	Cu(1A) - N(2A)	2.016 (4)		
C(3A) – C(4A)	1.503 (5)	Cu(1A) - O(4A)	2.290 (3)		
Bond angles (°)					
O(2A) - C(1A) - O(1A)	124.3 (4)	O(1A) - Cu(1A) - N(3A)	92.36 (14)		
O(2A) - C(1A) - C(2A)	118.2 (3)	O(1A) - Cu(1A) - N(1A)	84.97 (14)		
O(1A) - C(1A) - C(2A)	117.4 (3)	N(3A) - Cu(1A) - N(1A)	177.04 (17)		
N(1A) - C(2A) - C(1A)	110.6 (3)	O(1A) - Cu(1A) - N(2A)	169.38 (14)		
N(1A) - C(2A) - C(3A)	104.5 (3)	N(3A) - Cu(1A) - N(2A)	82.66 (15)		
C(1A) - C(2A) - C(3A)	111.7 (3)	N(1A) - Cu(1A) - N(2A)	99.75 (14)		
O(3A) - C(3A) - C(4A)	109.6 (3)	O(1A) - Cu(1A) - O(4A)	88.64 (11)		
O(3A) - C(3A) - C(2A)	104.2 (3)	N(3A) - Cu(1A) - O(4A)	94.96 (12)		
$\mathrm{C}(\mathrm{4A})-\mathrm{C}(\mathrm{3A})-\mathrm{C}(\mathrm{2A})$	114.7 (3)	N(1A) - Cu(1A) - O(4A)	86.29 (12)		
O(3A) - C(5A) - N(1A)	105.2 (3)	N(2A) - Cu(1A) - O(4A)	101.10 (12)		
C(5A) - N(1A) - C(2A)	104.4 (3)	C(5A) - O(3A) - C(3A)	105.1 (2)		
C(5A) - N(1A) - Cu(1A)	120.6 (3)	C(1A) - O(1A) - Cu(1A)	114.9 (3)		
C(2A) - N(1A) - Cu(1A)	107.3 (2)				

	1		1 1
Compounds	λ_1/nm	λ_2/nm	λ ₃ /nm
	(ε/M ⁻¹ cm ⁻¹)	(ε/M ⁻¹ cm ⁻¹)	$(\epsilon/M^{-1} \text{ cm}^{-1})$
phen	-	227(40,000)	264(30,000)
1	613 (60)	225 (60,000)	273 (50,000)
2	613 (60)	224 (30,000)	273 (30,000)
3	623 (60)	225 (40,000)	273 (40,000)
4	623 (70)	224 (40,000)	273 (30,000)
Concentra	tion of compo	ounds for visible	e and UV spectra
are 5x10 ⁻³ I	M and 3x10 ⁻⁵ N	A respectively.	

Table S3 UV-visible spectral data of aqueous solutions of phen and **1-4** (solvent: water-methanol 1:1 v/v)

Table S4 Molar conductivity (S cm² mol⁻¹) for **1-4** and other precursor compounds $(1x10^{-3} \text{ M})$

Compounds	0 h	1 h	24 h
1	50	50	50
2	50	50	50
3	50	50	50
4	50	50	50
Cu(NO ₃) ₂	120	120	120
phen	1	1	1
L-threo	1	1	1
D-threo	1	1	1
KCl	1410	1410	1410
(standard			
Solution)			

Table S5 Restriction enzymes (REs) inhibited by copper(II) compounds

Compounds	Hae III	Ssp I	Ase I	Nde I	Bst11071
CuCl ₂	-	-	-	-	-
[Cu(phen)Cl ₂]	+	+	+	+	+
1	-	+	-	+	-
2	-	+	-	+	+
3	+	-	-	-	-
4	-	-	+	-	-
RE (binding	site): H	ae III	(5'-CG	GC-3');	Ssp (5'-
AATATT-3');	4 <i>se</i> I (5'	-ATTA	AT-3');	Nde I (5	5'-CATATG-
3'); Bst 11071 (5'-GTATAC-3')					