Appendix II (Fluorescence quenching of BSA by copper(II) complexes)

Figure S4.4(I) Fluorescence quenching of 0.24 mM BSA by increasing concentration [0 (a), 2 (b), 4 (c), 10 (d), 20 (e), 40 (f), 100 (g), 200 (h) and 400 (i) μ M] of D-[Cu(phen)(5MeOCA)(H₂O)NO₃ **4**. (First trial)

Figure S4.4(II) Fluorescence quenching of 0.24 mM BSA by increasing concentration [0 (a), 2 (b), 4 (c), 10 (d), 20 (e), 40 (f), 100 (g), 200 (h) and 400 (i) μ M] of D-[Cu(phen)(5MeOCA)(H₂O)NO₃ **4**. (Second trial)

Figure S4.4(III) Fluorescence quenching of 0.24 mM BSA by increasing concentration [0 (a), 2 (b), 4 (c), 10 (d), 20 (e), 40 (f), 100 (g), 200 (h) and 400 (i) μ M] of D-[Cu(phen)(5MeOCA)(H₂O)NO₃ **4**. (Third trial)

Figure S4.3(I) Fluorescence quenching of 0.24 mM BSA by increasing concentration [0 (a), 2 (b), 4 (c), 10 (d), 20 (e), 40 (f), 100 (g), 200 (h) and 400 (i) μ M] of L-[Cu(phen)(5MeOCA)(H₂O)NO₃ **3**. (First trial)

Figure S4.3(II) Fluorescence quenching of 0.24 mM BSA by increasing concentration [0 (a), 2 (b), 4 (c), 10 (d), 20 (e), 40 (f), 100 (g), 200 (h) and 400 (i) μ M] of L-[Cu(phen)(5MeOCA)(H₂O)NO₃ **3**. (Second trial)

Figure S4.3(III) Fluorescence quenching of 0.24 mM BSA by increasing concentration [0 (a), 2 (b), 4 (c), 10 (d), 20 (e), 40 (f), 100 (g), 200 (h) and 400 (i) μ M] of L-[Cu(phen)(5MeOCA)(H₂O)NO₃ **3**. (Third trial)

Figure S4.2(I) Fluorescence quenching of 0.24 mM BSA by increasing concentration [0 (a), 2 (b), 4 (c), 10 (d), 20 (e), 40 (f), 100 (g), 200 (h) and 400 (i) μ M] of [Cu(phen)(D-threo)(H₂O)NO₃ **2**. (First trial)

Figure S4.2(II) Fluorescence quenching of 0.24 mM BSA by increasing concentration [0 (a), 2 (b), 4 (c), 10 (d), 20 (e), 40 (f), 100 (g), 200 (h) and 400 (i) μ M] of [Cu(phen)(D-threo)(H₂O)NO₃ **2**. (Second trial)

Figure S4.2(III) Fluorescence quenching of 0.24 mM BSA by increasing concentration [0 (a), 2 (b), 4 (c), 10 (d), 20 (e), 40 (f), 100 (g), 200 (h) and 400 (i) μ M] of [Cu(phen)(D-threo)(H₂O)NO₃ **2**. (Third trial)

Figure S4.1(I) Fluorescence quenching of 0.24 mM BSA by increasing concentration [0 (a), 2 (b), 4 (c), 10 (d), 20 (e), 40 (f), 100 (g), 200 (h) and 400 (i) μ M] of [Cu(phen)(L-threo)(H₂O)NO₃ **1**. (First trial)

Figure S4.1(II) Fluorescence quenching of 0.24 mM BSA by increasing concentration [0 (a), 2 (b), 4 (c), 10 (d), 20 (e), 40 (f), 100 (g), 200 (h) and 400 (i) μ M] of [Cu(phen)(L-threo)(H₂O)NO₃ **1**. (Second trial)

Figure S4.1(III) Fluorescence quenching of 0.24 mM BSA by increasing concentration [0 (a), 2 (b), 4 (c), 10 (d), 20 (e), 40 (f), 100 (g), 200 (h) and 400 (i) μ M] of [Cu(phen)(L-threo)(H₂O)NO₃ **1**. (Third trial)