Supplementary Data and Figures.

Supplementary Figure S1. $[Re(CO)_3(H_2O)_3]OTf$ ESI-MS spectrometer: m/z 271 $([Re(CO)_3]^+, 90\%)$, 289 $([Re(CO)_3(H_2O)]^+, 30\%)$, 312 $([Re(CO)_3(H_2O) + Na]^+, 100\%)$ and 330 $([Re(CO)_3(H_2O)_2 + Na]^+, 70\%)$

Supplementary Figure S2. Re(CO)₃D,L-DAPA IR (KBr, ν/cm^{-1}) spectrometer: 2026 (s) and 1895 (s)

Supplementary Figure S3. ¹H NMR spectrum of Re(CO)₃D,L-DAPA. ¹H NMR [δ (ppm), CD₃OD-D₂O]: 2.76 - 2.75 (m, 1H-methylene), 3.05 - 2.98 (m, 1H-methylene), 3.91 (s, 1H-methine)

Supplementary Figure S4. ¹³C NMR spectrum of Re(CO)₃D,L-DAPA. ¹³C NMR (CD₃OD): δ 197.9, 196.9 [*fac*-Re(CO)₃], 181.4 (C, COO⁻), 59.9 (CH), 41.7 (CH₂)

Supplementary Figure S5. ¹³C NMR spectrum of Re(CO)₃D,L-DAPA. DEPT-135

Supplementary Figure S6. ¹³C NMR spectrum of Re(CO)₃D,L-DAPA. DEPT-90

Supplementary Figure S7. Re(CO)₃D,L-DAPA ESI-MS spectrometer: m/z 396.90 (100%, M + Na)⁺

Supplementary Figure S8. Re(CO)₃L-Asp IR (KBr, v/cm^{-1}) spectrometer: 2027 (s) and 1899 (s)

Supplementary Figure S9. ¹H NMR spectrum of $Re(CO)_3L$ -Asp. ¹H NMR [δ (ppm), $CD_3OD - D_2O$]: 2.87-2.82 (m, 2H-methylene), 3.94 (s, 1H-methine)

Supplementary Figure S10. ¹³C NMR spectrum of Re(CO)₃L-Asp. ¹³C NMR (CD₃OD): δ 199.4, 198.5, 198.0 [*fac*-Re(CO)₃], 186.2 (C, α-COO), 176.9 (C, β-COO⁻), 54.2 (CH), 40.9 (CH₂).

Supplementary Figure S11. ¹³C NMR spectrum of Re(CO)₃L-Asp. DEPT-135

Supplementary Figure S12. ¹³C NMR spectrum of Re(CO)₃L-Asp. DEPT-90

Supplementary Figure S13. Re(CO)₃L-Asp ESI-MS spectrometer: m/z 400.43 (100%, M-H)⁻

Supplementary Figure S14. Re(CO)₃ D,L-Asp IR (KBr, v/cm^{-1}) spectrometer: 2025 (s), 1905 (s), 1874 (s)

Supplementary Figure S15. ¹H NMR spectrum of $Re(CO)_3 D$,L-Asp. ¹H NMR [δ (ppm), D_2O]: 2.74 (s, 1H- methylene), 2.80 (d, 1H-methylene), 3.99-3.94 (b, 1H-methine).

Supplementary Figure S16. ¹³C NMR spectrum of Re(CO)₃ D,L-Asp. ¹³C NMR (D₂O): δ 198.0, 197.1, 196.3 [*fac*-Re(CO)₃], 185.8 (C, α-COO⁻), 176.7 (C, β-COO⁻), 52.4 (CH), 39.4 (CH₂).

Supplementary Figure S17. ¹³C NMR spectrum of Re(CO)₃ D,L-Asp. DEPT-135

Supplementary Figure S18. ¹³C NMR spectrum of Re(CO)₃ D,L-Asp. DEPT-90

Supplementary Figure S19. Re(CO)₃ D,L-Asp ESI-MS spectrometer: MS (ESI, -ve mode): $m/z 400.32 (100\%, M-H)^{-}$.

Supplementary Figure S20. [Et₃NH][Re(CO)₃-(D,L-Asp)] dimeric complex IR (KBr, ν/cm^{-1}) spectrometer: IR (KBr, ν/cm^{-1}): 2011 (s), 1883 (s), 1856 (s).

Supplementary Figure S21. ¹H NMR spectrum of $[Et_3NH][Re(CO)_3-(D,L-Asp)]$ dimeric complex. ¹H NMR [δ (ppm), CD₃OD]: δ 1.33 (t, 18H, CH₃-Triethylamine), 2.46-2.53, 2.75-2.94 (m, 4H, 2CH₂), 3.22 (q, 12H, CH₂-Triethylamine), 3.35-3.41 (m, H, CH), 3.89-3.93 (m, H, CH).

Supplementary Figure S22. ¹³C NMR spectrum of [Et₃NH][Re(CO)₃-(D,L-Asp)] dimeric complex. ¹³C NMR [δ (ppm), CD₃OD]: δ 199.4, 199.2, 199.1, 198.5, 198.4 [2(*fac*-Re(CO)₃)], 186.2 (-COO⁻), 183.9 (-COO⁻), 177.7 (-COO⁻), 177.0 (-COO⁻), 57.2 (CH), 54.1 (CH), 48.0 (CH₂-triethylamine), 40.8 (CH₂), 40.3 (CH₂), 9.5 (CH₃-triethylamine).

Supplementary Figure S23. ¹³C NMR spectrum of [Et₃NH][Re(CO)₃-(D,L-Asp)] dimeric complex. DEPT-135

Supplementary Figure S24. ¹³C NMR spectrum of [Et₃NH][Re(CO)₃-(D,L-Asp)] dimeric complex. DEPT-90

Supplementary Figure S25. $[Et_3NH][Re(CO)_3-(D,L-Asp)]$ dimeric complex. FAB(+) spectrometer: (mNBA) MS: m/z 1007.04 $[2M+2Et_3NH+H]^+$ dimeric complex, 504.53 $[M+Et_3NH+H]^+$ monomeric complex.

Supplementary Figure S26. Re(CO)₃CysH. IR (KBr, ν/cm^{-1}) spectrometer: 2001 (s), 1896 (s).

Supplementary Figure S27. ¹H NMR spectrum of $Re(CO)_3CysH$. ¹H NMR [δ (ppm), D₂O]: 3.37-3.34 (m, 2H-methylene), 3.95-3.94 (m, 1H-methine).

Supplementary Figure S28. ¹³C NMR spectrum of Re(CO)₃CysH. ¹³C NMR (D₂O): δ 195.4 [*fac*-Re(CO)₃], 171.2 (C, α-COO⁻), 58.0 (CH), 37.1 (CH₂).

Supplementary Figure S29. ¹³C NMR spectrum of Re(CO)₃CysH. DEPT-135

Supplementary Figure S30. ¹³C NMR spectrum of Re(CO)₃CysH. DEPT-90

Supplementary Figure S31. Re(CO)₃CysH ESI-MS spectrometer: m/z 391.91 [100%, $(M+H)^+$].

Supplementary Data S32. Bond lengths in [Å] of Re(CO)₃-D,L-DAPA and Re(CO)₃-D,L-Asp.Et₃NH crystal data in table.

Supplementary Data S33. Bond angle in Degree of Re(CO)₃-D,L-DAPA and Re(CO)₃-D,L-Asp.Et₃NH crystal data in table.

Supplementary Figure S34. Electrophoresis Fig. of tricarbonyltechnetium (I) complexes of amino acids. Electrophoresis done in 0.01M bicarbonate buffer pH 7 for 60 min at potential difference of 3kV and applied current of 10 mA for 1 h.

Supplementary Figure S1.

Supplementary Figure S3.

Supplementary Figure S4.

Supplementary Figure S6.

Supplementary Figure S7.

Supplementary Figure S8.

Supplementary Figure S9.

Supplementary Figure S10.

Supplementary Figure S11.

Supplementary Figure S12.

Supplementary Figure S13.

Supplementary Figure S14.

Supplementary Figure S15.

Supplementary Figure S16.

Supplementary Figure S17.

Supplementary Figure S18.

Supplementary Figure S19.

Supplementary Figure S20.

Supplementary Figure S21.

Supplementary Figure S22.

Supplementary Figure S23.

210 200 190 180 170 160 150 140 130 120 110 100 30 20

Supplementary Figure S24.

Supplementary Figure S25.

Supplementary Figure S26.

Supplementary Figure S27.

Supplementary Figure S28.

Supplementary Figure S29.

Supplementary Figure S30.

Supplementary Figure S31.

Re(CO) ₃ -D,L-DAPA	Bond lengths [Å]	Re(CO) ₃ -D,L-	Bond lengths [Å]
		Asp.Et ₃ NH	
Re(1)-C(1)	1.899(10)	Re(1)-C(2)	1.892(7)
Re(1)-C(3)	1.924(10)	Re(1)-C(1)	1.894(8)
Re(1)-C(2)	1.946(11)	Re(1)-C(3)	1.922(7)
Re(1)-O(4)	2.182(7)	Re(1)-O(6)	2.145(4)
Re(1)-N(1)	2.208(9)	Re(1)-O(4)	2.150(4)
Re(1)-N(2)	2.223(8)	Re(1)-N(1)	2.200(5)
N(2)-C(6)	1.467(14)	C(1)-O(1)	1.160(8)
C(4)-O(3)	1.242(14)	C(2)-O(2)	1.152(8)
C(4)-O(4)	1.267(13)	C(3)-O(5)	1.149(8)
C(4)-C(5)	1.522(16)	C(4)-O(3)	1.219(7)
N(1)-C(5)	1.492(14)	C(4)-O(4)	1.284(7)
C(1)-O(1)	1.152(13)	C(4)-C(5)	1.529(8)
C(5)-C(6)	1.505(16)	C(5)-N(1)	1.493(7)
C(3)-O(5)	1.139(13)	C(5)-C(7)	1.525(8)

Bond lengths in [Å] of **Re**(**CO**)₃-**D**,**L**-**DAPA and Re**(**CO**)₃-**D**,**L**-**Asp.Et**₃**NH** crystal data.

C(2)-O(2)	1.102(14)	C(6)-O(7)	1.241(7)
		C(6)-O(6)	1.289(7)
		C(6)-C(7)#1	1.511(8)
		C(7)-C(6)#1	1.511(8)
		N(2)-C(12)	1.443(12)
		N(2)-C(8)	1.462(14)
		N(2)-C(10)	1.531(12)
		C(8)-C(9)	1.404(15)
		C(11)-C(10)	1.442(15)
		C(12)-C(13)	1.487(15)

Supplementary Data S32.

Bond angle in Degree of Re(CO)₃-D,L-DAPA and Re(CO)₃-D,L-Asp.Et₃NH crystal data.

Re(CO) ₃ -D,L-DAPA	Angle	Re(CO) ₃ -D,L-Asp.Et ₃ NH	Angle
C(1)-Re(1)-C(3)	88.7(5)	C(2)-Re(1)-C(1)	88.6(3)
C(1)-Re(1)-C(2)	88.1(5)	C(2)-Re(1)-C(3)	88.4(3)
C(3)-Re(1)-C(2)	89.7(5)	C(1)-Re(1)-C(3)	88.3(3)
C(1)-Re(1)-O(4)	171.2(4)	C(2)-Re(1)-O(6)	172.9(3)
C(3)-Re(1)-O(4)	98.6(4)	C(1)-Re(1)-O(6)	95.1(2)
C(2)-Re(1)-O(4)	96.7(4)	C(3)-Re(1)-O(6)	97.8(2)
C(1)-Re(1)-N(1)	98.0(4)	C(2)-Re(1)-O(4)	96.5(3)
C(3)-Re(1)-N(1)	171.2(4)	C(1)-Re(1)-O(4)	172.3(2)
C(2)-Re(1)-N(1)	96.2(4)	C(3)-Re(1)-O(4)	97.6(2)
O(4)-Re(1)-N(1)	74.2(3)	O(6)-Re(1)-O(4)	79.24(17)
C(1)-Re(1)-N(2)	97.7(4)	C(2)-Re(1)-N(1)	93.3(3)
C(3)-Re(1)-N(2)	96.5(4)	C(1)-Re(1)-N(1)	99.1(2)
C(2)-Re(1)-N(2)	171.6(4)	C(3)-Re(1)-N(1)	172.4(2)
O(4)-Re(1)-N(2)	76.8(3)	O(6)-Re(1)-N(1)	80.15(17)

N(1)-Re(1)-N(2)	77.1(3)	O(4)-Re(1)-N(1)	74.88(17)
C(6)-N(2)-Re(1)	111.0(6)	O(1)-C(1)-Re(1)	178.4(7)
O(3)-C(4)-O(4)	123.2(10)	O(2)-C(2)-Re(1)	179.2(8)
O(3)-C(4)-C(5)	120.2(10)	O(5)-C(3)-Re(1)	177.5(6)
O(4)-C(4)-C(5)	116.6(9)	O(3)-C(4)-O(4)	123.8(6)
C(4)-O(4)-Re(1)	113.9(6)	O(3)-C(4)-C(5)	120.7(6)
C(5)-N(1)-Re(1)	101.6(6)	O(4)-C(4)-C(5)	115.5(5)
O(1)-C(1)-Re(1)	178.2(9)	C(4)-O(4)-Re(1)	118.5(4)
N(1)-C(5)-C(6)	106.9(9)	N(1)-C(5)-C(7)	115.0(5)
N(1)-C(5)-C(4)	105.5(9)	N(1)-C(5)-C(4)	108.0(4)
C(6)-C(5)-C(4)	109.0(9)	C(7)-C(5)-C(4)	113.5(5)
N(2)-C(6)-C(5)	109.2(9)	O(7)-C(6)-O(6)	125.1(6)
O(5)-C(3)-Re(1)	179.2(11)	O(7)-C(6)-C(7)#1	118.7(5)
O(2)-C(2)-Re(1)	178.8(12)	O(6)-C(6)-C(7)#1	116.2(5)
		C(6)-O(6)-Re(1)	126.3(4)
		C(5)-N(1)-Re(1)	107.8(3)
		C(6)#1-C(7)-C(5)	115.8(5)
		C(12)-N(2)-C(8)	109.4(10)
		C(12)-N(2)-C(10)	113.5(9)
		C(8)-N(2)-C(10)	105.7(9)
		C(9)-C(8)-N(2)	119.3(12)
		C(11)-C(10)-N(2)	113.4(9)
		N(2)-C(12)-C(13)	115.4(10)

Supplementary Data S33.

Supplementary Figure S34.