Supporting Information

A New Sensor for Detection of CH₃CN and ClCH₂CN Vapors Based on Vapoluminescent Platinum (II) Complex

Jun Ni,^{*a, b} You-Gui Wang,^a Jin-Yun Wang,^b Yan-Qiu Zhao,^a Yu-Zhen Pan,^a Hui-Hui Wang,^a Xu Zhang,^b Jian-Jun Zhang^a and Zhong-Ning Chen^{*b}

^aCollege of Chemistry, Dalian University of Technology, 2 Lingshui Road, Dalian 116023, China,

^bState Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.

Contents

Table S1. Crystal data and structure refinement of $1 \cdot \text{VOC}$ (VOC = CH ₂ Cl ₂ , CHCl ₃ , and CH ₃ CN)5
Table S2. Selected bond lengths (Å) and bond angles (°) for $1 \cdot \text{VOC}$ (VOC = CH ₂ Cl ₂ , CHCl ₃ , and
CH ₃ CN)
Table S3. Hydrogen-bonding geometry (Å, °) for $1 \cdot \text{VOC}$ (VOC = CH ₂ Cl ₂ , CHCl ₃ , and CH ₃ CN)7
Table S4. The optimized coordinates of 1 monomer by DFT method at the PBE1PBE level
Table S5. Partial molecular orbital compositions (%) in the ground state for 1 in dichloromethane
solution by TD-DFT method at the PBE1PBE level
Table S6. Absorption and emission transition properties of 1 in dichloromethane solution by TD-DFT
method at the PBE1PBE level with the polarized continuum model (PCM)13
Table S7. Partial molecular orbital compositions (%) in the ground state for solid-state $1.1\frac{1}{2}(CH_2Cl_2)$
by TD-DFT method at the PBE1PBE level
Table S8. Absorption and emission transitions properties of $1 \cdot 1\frac{1}{2}(CH_2Cl_2)$ by TD-DFT method at the
PBE1PBE level with the polarized continuum model (PCM)15
Table S9. Partial molecular orbital compositions (%) in the ground state for solid-state 1·CHCl ₃ by TD-
DFT method at the PBE1PBE level
Table S10. Absorption and emission transition properties of 1. CHCl ₃ by TD-DFT method at the
PBE1PBE level with the polarized continuum model (PCM)17
Table S11. Partial molecular orbital compositions (%) in the ground state for solid-state 1·CH ₃ CN by
TD-DFT method at the PBE1PBE level
Table S12. Absorption and emission transition properties of 1. CH ₃ CN by TD-DFT method at the

Figure S1. Crystal packing diagram of adjacent planar platinum moieties in 1·CHCl ₃ , showing an
antiparallel pattern in the case of $Pt \cdots Pt > 3.5 \text{ Å}$
Figure S2. One Pt moiety plane in $1 \cdot 1\frac{1}{2}$ CH ₂ Cl ₂ , observed from <i>c</i> axis direction. H atoms are omitted
for clarity21
Figure S3. One Pt moiety plane in $1 \cdot CHCl_3$, observed from c axis direction. H atoms are omitted for
clarity
Figure S4. The hydrogen bonds between solvate molecules and platinum moieties in $1.1\frac{1}{2}CH_2Cl_2(a)$
and $1 \cdot CHCl_3$ (b). H atoms not participating in the hydrogen bonds have been omitted for clarity22
Figure S5. The hydrogen bonds between solvate molecules and platinum moieties in 1·CH ₃ CN. H
atoms not participating in the hydrogen bonds have been omitted for
clarity
Figure S6. The layer stacking structure of $1 \cdot 1\frac{1}{2}CH_2Cl_2$. H atoms in Pt moieties are omitted for clarity.
Figure S7. The layer stacking structure of 1 ·CHCl ₃ . H atoms in Pt moieties are omitted for clarity24
Figure S8. 1-D column structure in $1 \cdot CH_3CN$. Acetonitrile solvate molecules are marked in pink color.
H atoms not participating in the hydrogen bonds have been omitted for clarity25
Figure S9. Low-energy absorption (dash lines) and emission spectra (solid lines) of 1 in various
solvents at ambient temperature
Figure S10. Liquid state emission spectra of 1 in various solvents at ambient
temperature
Figure S11. Liquid state emission spectra of 1 in CH_2Cl_2 solution with different concentration at
ambient temperature
Figure S12. Solid state emission spectra of $1 \cdot 1\frac{1}{2}$ CH ₂ Cl ₂ during desorption process by heating at 120°C

under N ₂ atmosphere
Figure S13. Emission spectra of solid sample 1 upon exposure to various VOC vapors at ambient temperature
Figure S14. Dynamic emission spectral changes of 1·CH ₃ CN by heating at 120°C for 10 hours under
N_2
atmosphere
Figure S15. Photographic images of 1 deposited on quartz slices and exposed to selected organic
vapors under ambient light and UV light irradiation (365 nm)
Figure S16. Optimized structure of 1 in the ground state by DFT method at the PBE1PBE level32
Figure S17. Calculated (blue vertical bars) and measured (black line) UV-vis absorption spectra of 1 in
dichloromethane solution at ambient temperature
Figure S18. Calculated (blue vertical bars) and measured (black line) UV-vis absorption spectra of solid-state $1 \cdot 1\frac{1}{2}$ CH ₂ Cl ₂ at ambient temperature
Figure S19. Calculated (blue vertical bars) and measured (black line) UV-vis absorption spectra of
solid-state 1 ·CHCl ₃ at ambient temperature
Figure S20. Calculated (blue vertical bars) and measured (black line) UV-vis absorption spectra of solid-state 1 ·CH ₃ CN at ambient temperature
Figure S21. Plots of the frontier molecular orbitals involved in the absorption of 1 in dichloromethane
solution (isovalue = 0.02)
Figure S22. Plots of the frontier molecular orbitals involved in the absorption of $1 \cdot 1\frac{1}{2}$ (CH ₂ Cl ₂) in solid state (isovalue = 0.02)

Figure S23. Plots of the frontier molecular orbitals involved in the absorption of 1 ·CHCl₃ in solid state

(isovalue = 0.02)
Figure S24. Plots of the frontier molecular orbitals involved in the absorption of 1·CH ₃ CN in solid state
(isovalue = 0.02)

	1 ·1 ¹ / ₂ (CH ₂ Cl ₂)	1·CHCl ₃	1·CH ₃ CN
empirical formula	$C_{41.5}H_{45}Cl_3N_2PtSi_2$	$C_{41}H_{42}Cl_3N_2PtSi_2$	$C_{42}H_{45}N_3PtSi_2$
fw	929.41	920.39	843.07
space group	P-1	P-1	$P2_{1}/c$
<i>a</i> , Å	12.1068(4)	12.3245(5)	13.2821(3)
<i>b</i> , Å	18.3651(7)	18.1803(7)	30.6005(7)
<i>c</i> , Å	21.0217(7)	19.7378(8)	20.2538(4)
<i>α</i> , °	74.111(2)	88.681(2)	90
β, °	77.900(2)	74.458(2)	91.823(1)
γ, °	81.188(2)	79.431(2)	90
$V, Å^3$	4372.7(3)	4186.9(3)	8227.8(3)
Ζ	2	4	8
$D_{\rm c}/{\rm gcm}^{-3}$	1.412	1.460	1.361
μ , mm ⁻¹	3.476	3.629	3.499
<i>F</i> (000)	1860	1836	3392
Reflections collected / unique	40932 / 15364	49631 / 14723	54141 / 14460
R _{int}	0.038	0.044	0.045
temp, (K)	273	210	296
$\mathrm{R1}(F_o)^a$	0.0344	0.0403	0.0365
$\mathrm{wR2}(F_o^2)^b$	0.0908	0.0864	0.0826
GOF	1.010	1.090	1.021

Table S1. Crystal data and structure refinement of $1 \cdot \text{VOC}$ (VOC = CH₂Cl₂, CHCl₃, and CH₃CN).

 $\overline{{}^{a}R1} = \Sigma |F_{o} - F_{c}| / \Sigma F_{o}; {}^{b}wR2 = \Sigma [w(F_{o}^{2} - F_{c}^{2})^{2}] / \Sigma [w(F_{o}^{2})]^{1/2}$

	$1 \cdot 1 \frac{1}{2} (CH_2Cl_2)$	1·CHCl ₃	1·CH ₃ CN
Shortest PtPt distance	4.028	4.241	3.328
Pt1-N	2.068(4), 2.069(4)	2.069(3), 2.066(3)	2.053(4), 2.079(4)
Pt2-N	2.068(4), 2.064(4)	2.075(3), 2.080(3)	2.061(4), 2.071(4)
Pt1-C	1.950(5), 1.953(4)	1.959(4), 1.956(4)	1.938(6), 1.952(6)
Pt2-C	1.951(6), 1.953(5)	1.939(4), 1.964(4)	1.942(6), 1.951(6)
N1-Pt1-N2	79.23(14)	79.04(11)	79.04(16)
N1-Pt1-C21	93.48(16)	93.49(14)	93.7(2)
N2-Pt1-C31	96.13(18)	95.13(13)	97.19(19)
C21-Pt1-C31	91.2(2)	92.34(15)	90.1(2)
N3-Pt2-N4	79.15(15)	79.27(12)	78.71(17)
N3-Pt2-C61	94.8(2)	93.30(14)	96.7(2)
N4-Pt2-C71	94.05(17)	96.66(14)	93.9(2)
C61-Pt2-C71	92.0(2)	90.76(16)	90.7(3)

Table S2. Selected bond lengths (Å) and bond angles (°) for $1 \cdot \text{VOC}$ (VOC = CH₂Cl₂, CHCl₃, and CH₃CN).

$1 \cdot 1 \frac{1}{2} (CH_2 Cl_2)$						
D-H···A	<i>D</i> -Н	Н…А	D···A	<i>D</i> - H… <i>A</i>	Symmetry code	
C01-H01A…π(C61≡C62)	0.97	2.76	3.405	125	x,y,z	
C01-H01B… <i>π</i> (C71≡C72)	0.97	2.63	3.547	158	x,y,z	
C03-H03B…Cg1	0.97	2.68	3.649	174	1-x,1-y,1-z	
C48-H48A…π(C31≡C32)	0.93	2.85	3.516	130	x,1+y,z	
C49-H49A…π(C21≡C22)	0.93	2.84	3.745	165	x,1+y,z	

Table S3. Hydrogen-bonding geometry (Å, °) for $1 \cdot \text{VOC}$ (VOC = CH₂Cl₂, CHCl₃, and CH₃CN).

Cg1 is the benzene ring containing C63 atom.

1·CHCl ₃						
D-H···A	<i>D</i> -Н	H…A	D···A	<i>D</i> -H…A	Symmetry code	
C01-H01···π(C21≡C22)	0.98	2.75	3.550	140	x,y,z	
C01-H01…π(C31≡C32)	0.98	2.89	3.549	125	x,y,z	
C02-H02…π(C31≡C32)	0.98	2.60	3.578	174	x,y,z	
C38-H38····Cl4	0.93	2.91	3.827	171	x,y,z	
C12-H12…π(C61≡C62)	0.93	2.90	3.823	171	x,y,z	
C13-H13… <i>π</i> (C71≡C72)	0.93	2.86	3.504	127	x,y,z	

1·CH ₃ CN					
<i>D</i> -H··· <i>A</i>	<i>D-</i> Н	H···A	$D \cdots A$	<i>D</i> -H… <i>A</i>	Symmetry code
C74-H74A…π(C04≡N02)	0.93	2.93	3.843	166	x,y,z
C9-H9A…N01	0.93	2.70	3.325	126	x,y,-1+z
C01-H01C…π(C31≡C32)	0.96	2.78	3.501	132	1-x,-y,1-z
C19-H19C…π(C02≡N01)	0.96	2.73	3.600	151	x,0.5-y,-0.5+z
C52-H52A…N02	0.93	2.75	3.419	129	-x,-y,-z

Atom	Coordinates (Angstroms)			
	Х	Y	Z	
Pt	-0.01993500	-0.38461200	0.01503600	
Si	7.86141800	-2.14180600	-0.18856000	
Si	-7.96812200	-2.15760600	0.11193000	
Ν	1.27841000	-2.01896900	-0.01913300	
Ν	-1.34904800	-1.99600300	0.02585700	
С	2.60587100	-1.91524900	-0.05024200	
Н	2.99360000	-0.90046500	-0.05828300	
С	3.44765500	-3.03416100	-0.07120200	
С	2.84645900	-4.30174200	-0.06056800	
Н	3.46437100	-5.19312600	-0.07648600	
С	1.46575600	-4.39810100	-0.03137300	
Н	0.99462300	-5.37413400	-0.02500500	
С	0.68755300	-3.23982800	-0.01108100	
С	-0.77849300	-3.22669700	0.01567900	
С	-1.57570400	-4.37194400	0.02734200	
Н	-1.12077900	-5.35558300	0.02028700	
С	-2.95428100	-4.25214600	0.04760900	
Н	-3.58749300	-5.13282000	0.05654400	
С	-3.53508300	-2.97482100	0.05618700	
С	-2.67507000	-1.86970100	0.04517800	
Н	-3.04446500	-0.84807500	0.05239100	
С	4.85259900	-2.83944000	-0.10295600	
С	6.04975600	-2.61070900	-0.13259400	
С	-4.93902600	-2.76961400	0.07495500	
С	-6.13949500	-2.55717700	0.09014600	

Table S4. The optimized coordinates of 1 monomer by DFT method at the PBE1PBE level.

С	8.00359200	-0.55783700	-1.22340500
Н	7.67552600	-0.73302400	-2.25195000
Н	7.38584800	0.24353500	-0.80683600
Н	9.04163800	-0.21097000	-1.25253500
С	8.44156300	-1.84811200	1.59546100
Н	9.49725100	-1.55839400	1.60870900
Н	7.86386000	-1.04892300	2.06840500
Н	8.32975700	-2.75233000	2.20044500
С	8.82624100	-3.57051500	-0.98366200
Н	8.47172400	-3.76565400	-1.99972900
Н	9.89209400	-3.32661500	-1.03772600
Н	8.71846700	-4.49049200	-0.40200800
С	-8.13678100	-0.26718200	0.12998400
Н	-7.65319800	0.15938600	1.01379900
Н	-7.67323300	0.17434800	0.75722100
Н	-9.19183900	0.02457300	0.14442200
С	-8.72347100	-2.92488600	1.67560600
Н	-8.59720300	-4.01127400	1.68172300
Н	-8.25262100	-2.52194200	2.57667300
Н	-9.79519800	-2.70723500	1.72589100
С	-8.75386200	-2.89797300	-1.44980000
Н	-8.62880000	-3.98419300	-1.47643100
Н	-9.82614100	-2.67879100	-1.47624600
Н	-8.29965700	-2.48043300	-2.35276800
С	1.37829400	0.95443200	0.00650100
С	2.35373200	1.69724000	0.00050100
С	3.48411500	2.56297200	-0.01790500
С	4.71421700	2.16253400	0.53361100
Н	4.79082000	1.17959200	0.99026400
С	5.81685000	3.00572900	0.50286700

Н	6.75697000	2.67365900	0.94003600
С	5.74380500	4.27582300	-0.07750700
С	4.52056000	4.67345400	-0.62590600
Н	4.43874600	5.65631600	-1.08585800
С	3.41032400	3.84074700	-0.59887300
Н	2.46907000	4.16402900	-1.03246100
С	6.92889800	5.20555100	-0.06594600
Н	6.91304500	5.82991200	-0.96749700
Н	7.85488500	4.61941200	-0.11026700
С	6.95725800	6.10516800	1.17188700
Н	7.82502700	6.77292600	1.15728700
Н	6.05428300	6.72135600	1.22636300
Н	7.00244700	5.50722500	2.08763500
С	-1.38024600	0.99220100	0.04581500
С	-2.31627500	1.78396900	0.06627100
С	-3.37159600	2.73919000	0.08975800
С	-4.72034900	2.34282700	0.09540800
Н	-4.95920800	1.28279000	0.08375300
С	-5.73928700	3.28517200	0.12143900
Н	-6.77542400	2.95134600	0.12969200
С	-5.46095600	4.65528500	0.14265600
С	-4.11928000	5.04946600	0.13920500
Н	-3.87648300	6.11001500	0.16174900
С	-3.09197700	4.11696000	0.11351300
Н	-2.05522800	4.43878700	0.11656200
С	-6.56999300	5.67444500	0.12235100
Н	-6.25051900	6.57316700	0.66358800
Н	-7.44028300	5.28031200	0.66109800
С	-6.98624000	6.06087600	-1.29880600
Н	-7.79083000	6.80361900	-1.28867200

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is The Royal Society of Chemistry 2013

Н	-6.14041600	6.48209700	-1.85122800
Н	-7.33759800	5.18519800	-1.85379400

-	Orbital	Energy	MO Contribution (%)			
		(eV)	Pt (s/p/d)	Me ₃ SiC=CbpyC=CSiMe ₃	C≡CPhEt	
-	LUMO+4	-0.57	13.63 (0/75/24)	11.52	74.85	
	LUMO+2	-1.22	0.89 (0/1/97)	97.33	1.78	
	LUMO+1	-1.57	4.29 (0/74/24)	92.02	3.69	
	LUMO	-2.78	2.96 (0/37/62)	94.91	2.13	
	НОМО	-5.59	22.84 (0/0/100)	1.70	75.47	
	HOMO-1	-5.78	24.58 (0/6/93)	4.77	70.66	
	HOMO-2	-6.33	40.22 (1/1/98)	5.32	54.47	
	HOMO-3	-6.80	17.22 (16/0/82)	31.29	51.48	
	HOMO-5	-6.86	2.62 (2/2/95)	71.31	26.07	

Table S5. Partial molecular orbital compositions (%) in the ground state for 1 in dichloromethane
 solution by TD-DFT method at the PBE1PBE level.

States	E, nm (eV)	O.S.	Component	Contri.	Assignment	Measured Wavelength (nm)
T ₁	615	0.0000	HOMO→LUMO	85%	³ LLCT/ ³ MLCT	640
	(2.02)		HOMO-5→LUMO	9%	³ IL/ ³ LLCT	
S_2	522 (2.38)	0.1283	HOMO-1→LUMO	95%	¹ LLCT/ ¹ MLCT	
S_3	452 (2.74)	0.0181	HOMO-2→LUMO	97%	¹ LLCT/ ¹ MLCT	457
S_7	356	56 1.2234	HOMO-5→LUMO	66%	¹ IL/ ¹ LLCT	369
(3.4	(3.48)		HOMO-3→LUMO	10%	¹ LLCT/ ¹ IL/ ¹ MLCT	
S_9	334	334 0.1511 (3.72)	HOMO→LUMO+2	85%	¹ LLCT/ ¹ MLCT	340
	(3.72)		HOMO-1→LUMO+1	9%	¹ LLCT/ ¹ MLCT	
S_{12}	319	319 0.2824 (3.89)	HOMO-1→LUMO+2	75%	¹ LLCT/ ¹ MLCT	
	(3.89)		HOMO-2→LUMO+1	17%	¹ LLCT/ ¹ MLCT	
S ₁₉	293 (4.23)	0.6218	HOMO→LUMO+4	88%	¹ IL/ ¹ MC/ ¹ MLCT	290
S ₂₅	275	0.1626	HOMO-1→LUMO+4	47%	¹ IL/ ¹ MC/ ¹ MLCT	276
	(4.50)	(4.50)	HOMO-5→LUMO+1	15%	¹ IL/ ¹ LLCT	
			HOMO-2→LUMO+4	13%	¹ IL/ ¹ MLCT/ ¹ MC	

Table S6. Absorption and emission transition properties of **1** in dichloromethane solution by TD-DFT method at the PBE1PBE level with the polarized continuum model (PCM).

IL denotes intraligand $\pi \rightarrow \pi^*$ transition of Me₃SiC=CbpyC=CSiMe₃; LLCT denotes π (C=CC₆H₄Et-4) \rightarrow π^* (Me₃SiC=CbpyC=CSiMe₃) state; MLCT denotes 5d(Pt) $\rightarrow \pi^*$ (Me₃SiC=CbpyC=CSiMe₃) state; MC

denotes metal-centered transition.

Table S7. Partial molecular orbital compositions (%) in the ground state for solid-state $1.1\frac{1}{2}(CH_2Cl_2)$ by TD-DFT method at the PBE1PBE level.

Orbital	Energy (eV)	MO Contribution (%)			
		Pt (s/p/d)	Me ₃ SiC=CbpyC=CSiMe ₃	C≡CPhEt	
LUMO+5	-0.84	4.91 (15/39/45)	91.24	3.85	
LUMO+4	-0.92	8.14 (40/48/12)	83.32	8.53	
LUMO+2	-1.24	13.18 (48/41/11)	81.37	5.46	
LUMO+1	-2.25	15.24 (42/37/21)	78.49	6.28	
LUMO	-2.36	3.75 (2/4/55)	93.38	2.88	
HOMO	-5.04	24.85 (0/0/99)	4.99	70.16	
HOMO-2	-5.30	27.02 (2/6/92)	7.18	65.79	
HOMO-3	-5.30	26.27 (2/6/91)	6.51	67.21	
HOMO-4	-5.68	40.24 (2/2/96)	6.29	53.48	
HOMO-8	-6.21	8.26 (5/6/87)	9.88	81.86	
HOMO-10	-6.49	35.26 (23/0/76)	51.25	13.50	
HOMO-11	-6.55	2.94 (20/5/75)	75.46	21.59	
HOMO-14	-6.77	4.23 (8/20/72)	16.62	79.15	
HOMO-15	-6.79	1.64 (15/2/83)	27.91	70.46	
HOMO-25	-7.80	2.54 (2/31/67)	92.81	4.65	
HOMO-26	-7.80	1.26 (13/63/22)	95.20	3.54	

Table	S8.	Absorption	and	emission	transition	properties	of $1 \cdot 1\frac{1}{2}$	(CH_2Cl_2) by	TD-DFT	method	at the
PBE11	PBE	level with th	ie po	larized co	ontinuum n	nodel (PCN	1).				

States	E, nm (eV)	O.S.	Component	Contri.	Assignment	Measured Wavelength (nm)
T_1	652 (1.90)	0.0000	HOMO→LUMO	87%	³ LLCT/ ³ MLCT	612
S_8	520	0.0862	HOMO-2→LUMO+1	78%	¹ LLCT/ ¹ MC/ ¹ MLCT	557
	(2.39)		HOMO-3→LUMO	9%	¹ LLCT/ ¹ MLCT	
S 9	486 (2.55)	0.0539	HOMO-4→LUMO	85%	¹ LLCT/ ¹ MLCT	446
S ₃₃	348	0.2907	HOMO→LUMO+5	19%	¹ LLCT/ ¹ MLCT	368
	(3.30))	HOMO-10→LUMO+1	19%	¹ IL/ ¹ MLCT/ ¹ MC	
			HOMO-11→LUMO	18%	¹ IL/ ¹ LLCT	
			HOMO-2→LUMO+4	11%	¹ LLCT/ ¹ MLCT	
S_{48}	323	3 0.8360 33)	HOMO-15→LUMO	26%	¹ LLCT/ ¹ IL	320
	(3.83)		HOMO-3→LUMO+5	22%	¹ LLCT/ ¹ MLCT	
			HOMO-14→LUMO+1	9%	¹ LLCT/ ¹ IL/ ¹ LMCT	
			HOMO-11→LUMO	9%	¹ IL/ ¹ LLCT	
			HOMO-2→LUMO+4	8%	¹ LLCT/ ¹ MLCT	
S ₉₃	274	0.3503	HOMO-8→LUMO+4	24%	¹ LLCT	259
	(4.52)		HOMO-10→LUMO+2	19%	¹ IL/ ¹ MLCT/ ¹ MC	
			HOMO-26→LUMO	11%	$^{1}\mathrm{IL}$	
			HOMO-25→LUMO+1	8%	¹ IL/ ¹ LMCT	

Table S9. Partial molecular orbital compositions (%) in the ground state for solid-state $1 \cdot CHCl_3$ by TD-DFT method at the PBE1PBE level.

Orbital	Energy (eV)	MO Contribution (%)				
		Pt $(s/p/d)$	Me ₃ SiC=CbpyC=CSiMe ₃	C≡CPhEt		
LUMO+9	0.05	42.42 (76/19/4)	7.42	50.16		
LUMO+8	0	7.21 (1/71/27)	13.44	79.35		
LUMO+5	-0.81	5.77 (13/39/48)	89.09	5.13		
LUMO+4	-0.91	13.59 (44/49/7)	78.05	8.36		
LUMO+2	-1.27	13.64 (46/42/12)	81.45	4.92		
LUMO+1	-2.33	11.73 (37/37/26)	82.43	5.84		
LUMO	-2.40	3.65 (2/38/61)	93.88	2.47		
HOMO	-5.15	25.27 (1/1/99)	4.22	70.50		
HOMO-1	-5.2	23.19 (1/1/98)	3.52	73.29		
HOMO-2	-5.34	26.54 (1/5/94)	6.81	66.65		
HOMO-3	-5.36	25.36 (1/6/93)	6.60	68.04		
HOMO-4	-5.72	41.23 (2/2/96)	6.60	52.17		
HOMO-8	-6.24	15.53 (10/3/86)	10.23	74.24		
HOMO-9	-6.30	70.39 (25/0/75)	23.20	6.41		
HOMO-10	-6.52	33.82 (24/0/76)	55.52	10.66		
HOMO-15	-6.87	2.48 (18/6/76)	15.70	81.82		

Table S10. Absorption and emission transition properties of $1 \cdot \text{CHCl}_3$ by TD-DFT method at the PBE1PBE level with the polarized continuum model (PCM).

States	<i>E</i> , nm (eV)	O.S.	Component	Contri.	Assignment	Measured Wavelength (nm)
T_1	636 (1.95)	0.0000	HOMO→LUMO	82%	³ LLCT/ ³ MLCT	612
S_7	529 (2.34)	0.0694	HOMO-2→LUMO+1	77%	¹ LLCT/ ¹ MLCT/ ¹ MC	561
			HOMO-3→LUMO	12%	¹ LLCT/ ¹ MLCT	
S ₉	482 (2.57)	0.0678	HOMO-4→LUMO	87%	¹ LLCT/ ¹ MLCT	445
S_{31}	348 (3.56)	0.4349	HOMO-10→LUMO+1	65%	¹ IL/ ¹ MLCT/ ¹ MC	364
			HOMO-2→LUMO+4	11%	¹ LLCT/ ¹ MC/ ¹ MLCT	
S ₅₀	321 (3.86)	0.4591	HOMO-3→LUMO+5	56%	¹ LLCT/ ¹ MLCT	322
			HOMO-15→LUMO	9%	¹ LLCT/ ¹ IL	
S ₉₁	275 (4.51)	0.5383	HOMO-10→LUMO+2	37%	¹ IL/ ¹ MLCT/ ¹ MC	254
			HOMO→LUMO+8	14%	¹ IL/ ¹ MLCT	

Table S11. Partial molecular orbital compositions (%) in the ground state for solid-state **1**·CH₃CN by TD-DFT method at the PBE1PBE level.

Orbital	Energy (eV)	MO Contribution (%)			
		Pt $(s/p/d)$	Me ₃ SiC=CbpyC=CSiMe ₃	C≡CPhEt	
LUMO+6	-0.55	2.22 (30/54/16)	96.37	1.41	
LUMO+5	-0.88	6.18 (10/56/33)	90.06	3.75	
LUMO+4	-0.98	5.69 (15/63/21)	89.89	4.42	
LUMO+3	-1.3	11.89 (53/29/17)	85.06	3.05	
LUMO+1	-2.39	12.37 (51/25/24)	83.77	3.86	
LUMO	-2.53	5.00 (16/27/57)	91.58	3.43	
HOMO	-4.86	19.96 (8/3/88)	4.65	75.38	
HOMO-1	-5.01	18.31 (1/1/97)	3.93	77.76	
HOMO-4	-5.28	42.42 (10/1/89)	3.91	53.67	
HOMO-5	-5.59	40.97 (5/5/90)	7.96	51.07	
HOMO-6	-5.67	64.23 (21/3/76)	5.94	29.83	
HOMO-11	-6.62	5.54 (13/13/74)	92.09	2.38	

Table S12. Absorption and emission transition properties of $1 \cdot CH_3CN$ by TD-DFT method at the PBE1PBE level with the polarized continuum model (PCM).

States	<i>E</i> , nm (eV)	O.S.	Component	Contri.	Assignment	Measured Wavelength (nm)
T_1	751 (1.65)	0.0000	HOMO→LUMO	87%	³ LLCT/ ³ MMLCT	766
S ₁₂	520 (2.38)	0.0511	HOMO-6→LUMO	58%	¹ MLCT/ ¹ LLCT	531
			HOMO-5→LUMO	33%	¹ LLCT/ ¹ MLCT	
S ₁₃	496 (2.50)	0.0391	HOMO-5→LUMO+1	58%	¹ LLCT/ ¹ MLCT/ ¹ MC	498
			HOMO-6→LUMO+1	32%	¹ MLCT/ ¹ LLCT/ ¹ MC	
S ₅₃	337 (3.68)	0.4652	HOMO-11→LUMO+1	31%	$^{1}\mathrm{IL}$	368
			HOMO-6→LUMO+3	15%	¹ MLCT/ ¹ LLCT/ ¹ MC	
			HOMO-4→LUMO+5	11%	¹ LLCT/ ¹ MLCT	
S ₆₁	321 (3.86)	0.2196	HOMO-5→LUMO+4	70%	¹ LLCT/ ¹ MLCT	332
			HOMO-1→LUMO+6	10%	¹ LLCT/ ¹ MLCT	
S ₆₄	318 (3.90)	0.2800	HOMO-6→LUMO+4	53%	¹ MLCT/ ¹ LLCT	256

Figure S1. Crystal packing diagram of adjacent planar platinum moieties in $1 \cdot CHCl_3$, showing an antiparallel pattern in the case of Pt…Pt > 3.5 Å.

Figure S2. One Pt moiety plane in $1 \cdot 1\frac{1}{2}$ CH₂Cl₂, observed from *c* axis direction. H atoms are omitted for clarity.

Figure S3. One Pt moiety plane in 1·CHCl₃, observed from *c* axis direction. H atoms are omitted for clarity.

Figure S4. The hydrogen bonds between solvate molecules and platinum moieties in $1.1\frac{1}{2}CH_2Cl_2(a)$ and $1.CHCl_3(b)$. H atoms not participating in the hydrogen bonds have been omitted for clarity.

Figure S5. The hydrogen bonds between solvate molecules and platinum moieties in $1 \cdot CH_3CN$. H atoms not participating in the hydrogen bonds have been omitted for clarity.

Figure S6. The layer stacking structure of $1.1\frac{1}{2}$ CH₂Cl₂. H atoms in Pt moieties are omitted for clarity.

Figure S7. The layer stacking structure of 1·CHCl₃. H atoms in Pt moieties are omitted for clarity.

Figure S8. 1-D column structure in $1 \cdot CH_3CN$. Acetonitrile solvate molecules are marked in pink color. H atoms not participating in the hydrogen bonds have been omitted for clarity.

Figure S9. Low-energy absorption (dash lines) and emission spectra (solid lines) of 1 in various solvents at ambient temperature.

Figure S10. Liquid state emission spectra of 1 in various solvents at ambient temperature.

Figure S11. Liquid state emission spectra of 1 in CH_2Cl_2 solution with different concentration at ambient temperature.

Figure S12. Solid state emission spectra of $1 \cdot 1\frac{1}{2}CH_2Cl_2$ during desorption process by heating at 120°C under N₂ atmosphere.

Figure S13. Emission spectra of solid sample 1 upon exposure to various VOC vapors at ambient temperature.

Figure S14. Dynamic emission spectral changes of $1 \cdot CH_3CN$ by heating at 120°C for 10 hours under N₂ atmosphere.

Figure S15. Photographic images of **1** deposited on quartz slices and exposed to selected organic vapors under ambient light and UV light irradiation (365 nm).

Figure S16. Optimized structure of 1 in the ground state by DFT method at the PBE1PBE level.

Figure S17. Calculated (blue vertical bars) and measured (black line) UV-vis absorption spectra of **1** in dichloromethane solution at ambient temperature.

Figure S18. Calculated (blue vertical bars) and measured (black line) UV-vis absorption spectra of solid-state $1.1\frac{1}{2}$ CH₂Cl₂ at ambient temperature.

Figure S19. Calculated (blue vertical bars) and measured (black line) UV-vis absorption spectra of solid-state **1**·CHCl₃ at ambient temperature.

Figure S20. Calculated (blue vertical bars) and measured (black line) UV-vis absorption spectra of solid-state **1**·CH₃CN at ambient temperature.

Figure S21. Plots of the frontier molecular orbitals involved in the absorption of **1** in dichloromethane solution (isovalue = 0.02).

Figure S22. Plots of the frontier molecular orbitals involved in the absorption of $1.1\frac{1}{2}(CH_2Cl_2)$ in solid state (isovalue = 0.02).

HOMO-15

Figure S23. Plots of the frontier molecular orbitals involved in the absorption of $1 \cdot CHCl_3$ in solid state (isovalue = 0.02).

LUMO+6

LUMO+5

LUMO+4

LUMO+3

LUMO

НОМО

HOMO-1

HOMO-4

Figure S24. Plots of the frontier molecular orbitals involved in the absorption of $1 \cdot CH_3CN$ in solid state (isovalue = 0.02).