Supporting Information

Synthesis of Metallasiloxanes of Group 13-15 and Their Application in Catalysis

Yan Li^a, Jinjin Wang^a, Yile Wu^a, Hongping Zhu^{*a}, Prinson P. Samuel^b and Herbert W. Roesky^{*b}

^a State Key Laboratory of Physical Chemistry of Solid Surfaces, National Engineering Laboratory for Green Chemical Productions of Alcohols–Ethers–Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, China. Tel: +8605922181912; E-mail: hpzhu@xmu.edu.cn

^b Institut für Anorganische Chemie, Georg-August-Universität, Tammannstraße 4, 37077-Göttingen, Germany. Tel: +495513933001; E-mail: hroesky@gwdg.de

	1	2	3
formula	$C_{40}H_{78}Bi_2N_4O_4Si_4$	$C_{64}H_{118}N_4O_8Sb_2Si_8$	$C_{48}H_{89}Ge_2N_3O_6Si_6$
formula weight	1209.38	1539.84	1117.94
crystal system	Triclinic	Triclinic	Hexagonal
1space group	<i>P</i> -1	<i>P</i> -1	<i>P</i> 6(3)
a/Å	9.819(2)	9.7585(7)	24.8315(3)
b/Å	11.045(3)	14.3218(9)	24.8315(3)
c/Å	13.189(3)	14.4294(9)	16.6832(3)
°/deg	111.32(2)	82.922(5)	90
°/deg	97.198(19)	86.529(5)	90
°/deg	101.63(2)	86.857(5)	120
V/Å	1273.9(5)	1995.3(2)	8908.7(2)
Ζ	1	1	6
$\rho_{\rm calcd}/gcm^{-3}$	1.576	1.281	1.250
μ/mm^{-1}	7.030	0.845	1.177
<i>F</i> (000)	600	808	3564
crystal size/mm ³	$0.20 \times 0.10 \times 0.05$	$0.30 \times 0.15 \times 0.12$	0.38 imes 0.35 imes 0.25
θ range/deg	2.87-26.00	2.71-26.00	2.79-25.00
	$-12 \le h \le 12$	$-12 \le h \le 11$	$-29 \le h \le 29$
index ranges	$-13 \le k \le 13$	$-17 \le k \le 17$	$-29 \le k \le 29$
	$-16 \le l \le 16$	$-17 \le l \le 17$	$-19 \le l \le 19$
collected data	8581	14836	66089
unique data	4957	7821	10449
	$(R_{int} = 0.1256)$	$(R_{int} = 0.0454)$	$(R_{int} = 0.0482)$
completeness to θ	99.1%	99.9%	99.8%
data/restraints/param	1057/187/281	7821/0/404	10440/150/547
eters	473//10//204	/021/0/404	10449/130/347
GOF on F^2	0.956	1.009	1.215
final R indices $[I>2]$	$R_1 = 0.0800$	$R_1 = 0.0430$	$R_1 = 0.0705$
sigma(I)]	$wR_2 = 0.1335$	$wR_2 = 0.0696$	$wR_2 = 0.1702$
<i>R</i> indices (all data)	$R_1 = 0.1278$	$R_1 = 0.0597$	$R_1 = 0.0935$
	$wR_2 = 0.1537$	$wR_2 = 0.0760$	$wR_2 = 0.1816$
Largest diff	2 303/_1 /70	0 531/_0 557	2 7/2/_1 661
peak/hole (e·Å ⁻³)	2.373/-1.479	0.331/-0.337	2./72/74.001

I. Crystal data and structure refinement for compounds 1-6 (Table S1.)

	4	$5 \cdot C_7 H_8 \cdot 0.5 C_6 H_{14}$	6·0.75THF
formula	$C_{42}H_{80}Al_2N_2O_6Si_4$	C70H119Bi4N4O12Si8	C ₉₃ H ₁₇₆ Al ₆ N ₄ O _{18.75} Si ₈
formula weight	875.40	2269.33	2036.98
crystal system	Triclinic	Monoclinic	Orthorhombic
1space group	<i>P</i> -1	<i>P</i> 2(1)/c	P2(1)2(1)2(1)
a/Å	10.273(2)	15.5155(5)	18.6059(5)
$b/\text{\AA}$	11.090(2)	21.6905(6)	18.7005(5)
c/Å	12.605(3)	27.1120(7)	35.0951(11)
°/deg	97.36(3)		
°/deg	97.64(3)	92.249(3)	
°/deg	114.32(3)		
V/Å	1270.1(4)	9117.2(5)	12211.0(6)
Ζ	1	4	4
$\rho_{\rm calcd}/{\rm g}\cdot{\rm cm}^{-3}$	1.144	1.653	1.108
μ/mm^{-1}	0.194	7.854	0.187
F(000)	476	4428	4408
crystal size/mm ³	$0.30 \times 0.20 \times 0.19$	0.20 imes 0.05 imes 0.05	0.40 imes 0.40 imes 0.20
θ range/deg	3.04-26.00	2.71-26.00	2.70-26.00
index ranges	$-12 \le h \le 12$	$-19 \le h \le 19$	$-22 \le h \le 22$
	$-13 \le k \le 13$	$-26 \le k \le 26$	$-22 \le k \le 23$
	$-14 \le l \le 15$	$-33 \le l \le 29$	$-43 \le l \le 40$
collected data	10419	65416	90883
unique data	4893	17902	23933
	$(R_{\rm int} = 0.1024)$	$(R_{\rm int} = 0.1286)$	$(R_{\rm int} = 0.0915)$
completeness to θ	98.0%	99.9%	99.7%
data/restraints/param	1803/0/262	17002/301/000	22022/12/6/1220
eters	T0/J/0/202	17902/391/900	23733/1240/1227
GOF on F^2	1.012	1.014	1.045
final <i>R</i> indices	$R_1 = 0.0725$	$R_1 = 0.0664$	$R_1 = 0.0793$
[I > 2 sigma(I)]	$wR_2 = 0.1384$	$wR_2 = 0.0958$	$wR_2 = 0.1860$
<i>R</i> indices (all data)	$R_1 = 0.1312$	$R_1 = 0.1181$	$R_1 = 0.1126$
	$wR_2 = 0.1565$	$wR_2 = 0.1092$	$wR_2 = 0.2045$
Largest diff	0.347/-0.348	1.499/-1.129	0.838/-0.639

 $\frac{1}{2} \frac{1}{2} \frac{1}$

II. Crystal structures of compounds 2 and 4

Figure S1. Thermal ellipsoid (50%) drawing of **2**. The H atoms are omitted for clarity except for the SiOH one. Sb^{...}arene_{centriod}: 3.312 Å.

Figure S2. Thermal ellipsoid (50%) drawing of 4. The H atoms are omitted for clarity.

core	M–O (Å)	Si-O (Å)	O–M–O (°)	O–Si–O (°)
$Si_2O_4Bi_2$ in 1	2.051(9)-2.075(9)	1.629(9)-1.650(10)	89.7(4)	112.6(6)
$Si_2O_4Sb_2$ in 2	1.937(2)-1.973(2)	1.625(2)-1.643(2)	92.83(9)	108.22(12)
$Si_3O_6Ge_2$ in 3	1.717(6)-1.738(7)	1.623(9)-1.641(8)	109.5(3)-110.5(4)	106.0(3)-107.2(5)
$Si_2O_4Al_2$ in 4	1.711(3)-1.719(2)	1.605(2)-1.611(2)	116.31(13)	112.08(13)
$Si_4O_{12}Bi_4$ in 5	2.014(7)-2.071(7)	1.598(7)-1.640(7)	89.8(3)-103.0(3)	108.1(4)-111.6(4)
$Si_3O_6Al_3$ in 6	1.700(4)-1.731(4)	1.603(4)-1.621(4)	113.92(19)-114.7(2)	109.2(2)-110.9(2)

III. Table S2. Summary of important core bond parameters for complexes 1-6

IV. Description of ring system of compounds 1-6

It can be seen that in the chair-like conformation of $Si_2O_4Bi_2$ in 1 and $Si_2O_4Sb_2$ in 2 the two metal centers are deviated from the Si_2O_4 plane by ± 1.2242 and ± 1.1881 Å, respectively. However, in 5 the conformation of $Si_2O_4Bi_2$ changes with respect to the slightly distorted Si_2O_4 plane ($\Delta_{Si2O4} = 0.1503$ Å) although its chair-like shape is retained. In 4 a flat chair-like conformation of $Si_2O_4Al_2$ is shown with the two metal centers away from the Si_2O_4 plane ($\Delta_{Si2O4} = 0.0505$ Å) by ± 0.3104 Å. But, when assembled into a bicyclic structure (in 6), a boat-like conformation of the same ring is formed significantly different from that in 4. A boat-like $Si_2O_4Ge_2$ conformation is also present in the bicyclic structure of 3. Apparently, the $Si_2O_4M_2$ rings in 1–6 adopt different conformations owing to the different metals anchored. We pictured such rings in a lateral projecting view in Figure S3.

Figure S3. Lateral projecting view of the ring system of compounds 1-6

V. The completed results of compounds 1-6 as catalysts

	[∼] H + TMSCN −−−>	OTMS H CN
Cat.	Reaction time	Yield ^b (%)
1	5 min	≥99
2	60 min	95
3	60 min	\geq 99
4	5 min	\geq 99
5	5 min	\geq 99
6	5 min	\geq 99

Table S3. Addition reaction of TMSCN to benzaldehyde catalyzed by $1-6^{a}$

^a Benzaldehyde, 2 mmol; TMSCN, 3 mmol; catalyst, 0.02 mmol; at ambient temperature. ^b Yield was obtained according to Thin-Layer Chromatographic (TLC) and ¹H NMR spectral analysis.

The reaction of TMSCN with benzaldehyde was carried out in the presence of **1–6** (1 mol%, based on benzaldehyde) at ambient temperature in solvent-free condition. The results shown in Table S3 reveal that all the compounds **1–6** are catalytically active. The reactions approach completeness in 5 min to afford the product 2-trimethylsilyloxy-2-phenylacetonitrile when the bismuth(III) (**1**, **5**) and aluminum(III) (**4**, **6**) compounds are used as catalysts. However, the use of the antimony(III) (**2**) and germanium(IV) (**3**) compounds results in the respective yields of 95% and \geq 99% of the product in 60 min. It has been reported that under similar conditions SbCl₃ catalyzed this reaction to afford the product in 30–90% yields within 30–240 min by loading amounts of 4.4–26 mol%. In the presence of organic solvent such as THF, ethyl acetate, ethanol, acetonitrile, dichloromethane, and *n*-hexane, lower yields of the product were achieved (0–50% yields, 15–300 min, 17 mol% loading).^{S1} The bismuth(III)

halide and aryl compounds are also reported to catalyze this reaction and yield of the product depends on the nature of substituent at the bismuth center.^{S2} In addition, the alumatranes ((AIL)₂ and (PhCHO)AIL (L = tris(2-oxy-3,5-dimethylbenzyl)amine) are also known to be catalytically active for this reaction but the reaction was slow even with a high loading. ^{S3} However, **3** as a germanium(IV) compound is tested for the first time to show such catalytic property although heavier tin(IV) compounds such as SnCl₄ or R₂SnCl₂ (R = *n*Bu, Ph) are documented to exhibit good catalytic activities.^{S4} Comparatively, compounds **1–6** are effective catalysts for the addition reaction of TMSCN to benzaldehyde, of which the bismuth (**1** and **5**) and aluminum (**4** and **6**) compounds appear to be the best. Verkade et al. have well studied the catalytic properties of alumatranes by characterizing the possible interaction complexes on X-ray crystallography.^{S3a} Among **1** and **4–6**, compound **5** is homoleptic with a cage structure having the bismuth(III)…arene π -interactions which appears comparable to those of the alumatranes. This prompted us to select **5** as the catalyst for further investigations.

VI General procedures for the catalytic reactions of trimethylsilyl cyanide (TMSCN) with aldehyde or ketone.

Under N_2 atmosphere, a mixture of aldehyde or ketone (2 mmol), TMSCN (3mmol), and catalytic amount of the catalyst was stirred at room temperature. The reaction time was controlled within 5 min for quickly-done reactions or with a desired time to get satisfied result for relatively slow or slow reactions. The reaction progress was detected by combination of the Thin-Layer Chromatography (TLC) on 0.25 mm Merck silica gel sheets (60F-254) (4×2 cm²) equipped with UV light and the ¹H NMR spectral analysis. After workup, the mixture was allowed to directly pass through a silica-gel column using a mixture of petroleum ether and ethyl acetate (20:1) as an eluent. The eluents were collected and then evaporated to dryness to give the desired product that was studied by NMR (¹H, ¹³C, and ²⁹Si) and yield calculation.

C₆H₅CH(CN)OTMS. A colorless oil, 99% yield. ¹H NMR (500 MHz, CDCl₃, 298 K, ppm): δ 7.50–7.40 (m, 5 H, C₆H₅), 5.51 (s, 1 H, C*H*), 0.24 (s, 9 H, OSi*Me*₃). ¹³C NMR (125 MHz, CDCl₃, 298 K, ppm): δ 136.2, 129.2, 128.8, 126.2 (*C*₆H₅), 119.1 (*C*N), 63.5 (*C*H), –0.4 (OSi*Me*₃). ²⁹Si (99 MHz, CDCl₃, 298 K, ppm): δ 24.7 (OSi*Me*₃).

o-Br-C₆H₄CH(CN)OTMS. A colorless oil, 89% yield. ¹H NMR (500 MHz, CDCl₃, 298 K, ppm): δ 7.74 (m, 1 *H*), 7.58 (m, 1 *H*), 7.42 (m, 1 *H*), 7.27 (m, 1 *H*) (C₆H₄), 5.78 (s, 1 H, C*H*), 0.27 (s, 9 H, OSi*Me*₃). ¹³C NMR (125 MHz, CDCl₃, 298 K, ppm): δ 135.4, 132.9, 130.8, 128.5, 128.1, 121.6 (C₆H₄), 118.2 (CN), 63.1 (CH), -0.4 (OSi*Me*₃). ²⁹Si (99 MHz, CDCl₃, 298 K, ppm): δ 25.7 (OSiMe₃).

p-MeO-C₆H₄CH(CN)OTMS. A colorless oil, 99% yield. ¹H NMR (500 MHz, CDCl₃, 298 K, ppm): δ 7.39 (d, 2 H), 6.94 (d, 2 H) (C₆H₄), 5.44 (s, 1 H, CH), 3.83 (s, 3 H, OMe), 0.22 (s, 9 H, OSiMe₃). ¹³C NMR (125 MHz, CDCl₃, 298 K, ppm): δ 160.2, 128.4, 127.8, 114.2, 114.1 (C₆H₄), 119.2 (CN), 63.2 (CH), 55.1 (OMe), -0.4 (OSiMe₃). ²⁹Si (99 MHz, CDCl₃, 298 K,

ppm): δ 24.1 (OSiMe₃).

2-TMSO-C₆H₄CH(CN)OTMS. A colorless oil, 99% yield. ¹H NMR (500 MHz, CDCl₃, 298 K, ppm): δ 7.58–7.56 (m, 1 H), 7.28–7.25 (m, 1 H), 7.05–7.02 (m, 1 H), 6.86–6.84 (m, 1 H) (C₆H₄), 5.74 (m, 1 H, CH), 0.37 (s, 9 H, OSi*Me*₃ (ligated to aryl)), 0.24 (s, 9 H, OSi*Me*₃ (ligated to CH)). ¹³C NMR (125 MHz, CDCl₃, 298 K, ppm): δ 152.1, 130.1, 127.7, 126.9, 121.5, 118.1 (C₆H₄), 119.2 (CN), 58.5 (CH), 0.32 (OSi*Me*₃ (ligated to aryl)), –0.43 (OSi*Me*₃ (ligated to CH)). ²⁹Si (99 MHz, CDCl₃, 298 K, ppm): δ 24.1(OSiMe₃ (ligated to aryl), 21.6 (OSiMe₃ (ligated to CH)).

C₆H₅CH=CHCH(CN)OTMS. A colorless oil, 99% yield. ¹H NMR (500 MHz, CDCl₃, 298 K, ppm): δ 7.44–7.31 (m, 5 H, C₆H₅), 6.84 (d, 1 H, C₆H₅C*H*=CH), 6.22 (dd, 1 H, C₆H₅CH=C*H*), 5.14 (m, 1 H, C*H*), 0.29 (s, 9 H, OSi*Me*₃). ¹³C NMR (125 MHz, CDCl₃, 298 K, ppm): δ 135.0, 133.9, 128.7, 128.6, 126.9, 123.5 (C₆H₅CH=CH), 118.3 (CN), 62.2 (CH), -0.19 (OSi*Me*₃). ²⁹Si (99 MHz, CDCl₃, 298 K, ppm): δ 24.5 (OS*i*Me₃).

CH₃CH=CHCH(CN)OTMS. A colorless oil, 99% yield. ¹H NMR (500 MHz, CDCl₃, 298 K, ppm): δ 5.96 (m, 1 H, CH₃CH=CH), 5.55 (m, 1 H, CH₃CH=CH), 4.88 (m, 1 H, CH), 1.76 (m, 3 H, CH₃), 0.21 (s, 9 H, OSi*Me*₃). ¹³C NMR (125 MHz, CDCl₃, 298 K, ppm): δ 131.0 (CH₃CH=CH), 126.2 (CH₃CH=CH), 118.6 (CN), 62.0 (CH), 17.3 (CH₃), -0.3 (OSi*Me*₃). ²⁹Si (99 MHz, CDCl₃, 298 K, ppm): δ 23.9 (OSi*Me*₃).

CH₃CH₂CH(CN)OTMS. A colorless oil, 99% yield. ¹H NMR (500 MHz, CDCl₃, 298 K, ppm): δ 4.35 (t, 1 H, C*H*), 1.81 (m, 2 H, C*H*₂), 1.03 (t, 3 H, C*H*₃), 0.20 (s, 9 H, OSi*Me*₃). ¹³C NMR (125 MHz, CDCl₃, 298 K, ppm): δ 119.8 (*C*N), 62.6 (*C*H), 29.5 (*C*H₂), 8.8 (*C*H₃), -0.5 (OSi*Me*₃). ²⁹Si (99 MHz, CDCl₃, 298 K, ppm): δ 23.2 (OSi*Me*₃).

CH₃CH(Me)CH₂CH(CN)OTMS. A colorless oil, 99% yield. ¹H NMR (500 MHz, CDCl₃, 298 K, ppm): δ 4.42 (dd, 1 H, CH (ligated to OTMS)), 1.83 (m, 1 H, CH (ligated to Me)), 1.73 (m, 1 H), 1.63 (m, 1 H) (CH₂), 0.95 (d, 3 H), 0.93 (d, 3 H) (CH₃, Me), 0.20 (s, 9 H, OSiMe₃). ¹³C NMR (125 MHz, CDCl₃, 298 K, ppm): δ 120.2 (CN), 59.9 (CH (ligated to OTMS)), 44.9 (CH₂), 24.1, 22.4, 21.8 (CH (ligated to Me), CH₃), -0.5 (OSiMe₃). ²⁹Si (99 MHz, CDCl₃, 298 K, ppm): δ 23.1 (OSiMe₃).

CH₃(CH₂)₇CH₂CH(CN)OTMS. A colorless oil, 99% yield. ¹H NMR (500 MHz, CDCl₃, 298 K, ppm): δ 4.38 (t, 1 H, CH), 1.80–1.75 (m, 2 H, CH₃(CH₂)₇CH₂), 1.48–1.27 (m, 14 H, CH₃(CH₂)₇CH₂), 0.88 (t, 3 H, CH₃), 0.21 (s, 9 H, OSi*Me*₃). ¹³C NMR (125 MHz, CDCl₃, 298 K, ppm): δ 120.0 (CN), 61.4 (CH), 36.2, 31.8, 29.4, 29.3, 29.2, 28.9, 24.5, 22.6, 14.0 (CH₃(CH₂)₇CH₂), -0.5 (OSi*Me*₃). ²⁹Si (99 MHz, CDCl₃, 298 K, ppm): δ 24.7 (OSi*Me*₃).

Cl₃CCH(CN)OTMS. A colorless oil, 99% yield. ¹H NMR (500 MHz, CDCl₃, 298 K, ppm): δ 4.87 (s, 1 H, C*H*), 0.08 (s, 9 H, OSi*Me*₃). ¹³C NMR (125 MHz, CDCl₃, 298 K, ppm): δ 115.0 (*C*N), 96.6 (Cl₃C), 75.0 (*C*H), -0.5 (OSi*Me*₃). ²⁹Si (99 MHz, CDCl₃, 298 K, ppm): δ 24.4 (OSi*Me*₃).

2-C₄H₃S-CH(CN)OTMS. A colorless oil, 99% yield. ¹H NMR (500 MHz, CDCl₃, 298 K, ppm): δ 7.37 (d, 1 H), 7.20 (t, 1 H), 7.01 (m, 1 H) (C₄H₃S), 5.75 (s, 1 H, CH), 0.25 (s, 9 H, OSiMe₃). ¹³C NMR (125 MHz, CDCl₃, 298 K, ppm): δ 139.5, 127.1, 126.8, 126.2 (C₄H₃S), 118.2 (CN), 59.5 (CH), -0.4 (OSiMe₃). ²⁹Si (99 MHz, CDCl₃, 298 K, ppm): δ 25.3 (OSiMe₃).

2-C₄H₃O-CH(CN)OTMS. A colorless oil, 77% yield. ¹H NMR (500 MHz, CDCl₃, 298 K, ppm): δ 7.46 (m, 1 H), 6.54 (m, 1 H), 6.40 (m, 1 H (C₄H₃O), 5.55 (s, 1 H, CH), 0.20 (s, 9 H, OSiMe₃). ¹³C NMR (125 MHz, CDCl₃, 298 K, ppm): δ 148.3, 143.8, 110.8, 109.7 (C₄H₃O), 117.1 (CN), 57.4 (CH), -0.4 (OSiMe₃). ²⁹Si (99 MHz, CDCl₃, 298 K, ppm): δ 25.0 (OSiMe₃).

2-C₄H₃N(TMS)-CH(CN)OTMS. A colorless oil, 13% yield. ¹H NMR (500 MHz, CDCl₃, 298 K, ppm): δ 6.87–6.86 (m, 1 H), 6.56–6.55 (m, 1 H), 6.24–6.23 (m, 1 H) (C₄H₃N), 5.65 (s, 1 H, C*H*), 0.51 (s, 9 H, NSi*Me*₃), 0.20 (s, 9 H, OSi*Me*₃). ¹³C NMR (125 MHz, CDCl₃, 298 K, ppm): δ 131.4, 127.3, 114.2, 110.1 (C₄H₃N), 118.7 (CN), 58.3 (CH), 1.0 (NSi*Me*₃), -0.01 (OSi*Me*₃). ²⁹Si (99 MHz, CDCl₃, 298 K, ppm): δ 24.1 (NSi*Me*₃), 21.6 (OSi*Me*₃).

C₆H₅CMe(CN)OTMS. A colorless oil, 99% yield. ¹H NMR (500 MHz, CDCl₃, 298 K, ppm): δ 7.58–7.32 (m, 5 H, C₆H₅), 1.88 (s, 3 H, CMe), 0.20 (s, 9 H, OSiMe₃). ¹³C NMR (125 MHz, CDCl₃, 298 K, ppm): δ 142.0, 128.6, 124.6 (C₆H₅), 121.6 (CN), 71.6 (CMe), 33.5 (CMe), 1.0 (OSiMe₃). ²⁹Si (99 MHz, CDCl₃, 298 K, ppm): δ 20.4 (OSiMe₃).

4-MeO-C₆H₄CMe(CN)OTMS. A colorless oil, 68% yield. ¹H NMR (500 MHz, CDCl₃, 298 K, ppm): *δ* 7.47 (d, 2 H), 6.92 (d, 2 H) (C₆H₄), 3.83 (s, 3 H, OMe), 1.86 (s, 3 H, CMe), 0.17 (s, 9 H, OSiMe₃). ¹³C NMR (125 MHz, CDCl₃, 298 K, ppm): *δ* 159.8, 134.0, 126.0, 113.9 (C₆H₄), 121.7 (CN), 71.2 (CMe), 33.4 (OMe), 1.0 (OSiMe₃). ²⁹Si (99 MHz, CDCl₃, 298 K, ppm): *δ* 20.0 (OSiMe₃).

(CH₃CH₂)₂C(CN)OTMS. A colorless oil, 80% yield. ¹H NMR (500 MHz, CDCl₃, 298 K, ppm): δ 1.76 (td, 4 H, CH₃CH₂), 1.03 (t, 6 H, CH₃CH₂), 0.24 (s, 9 H, OSi*Me*₃). ¹³C NMR (125 MHz, CDCl₃, 298 K, ppm): δ 121.4 (*C*N), 74.3 (*C*CN), 33.5 (CH₃CH₂), 8.3 (*C*H₃CH₂), 1.2 (OSi*Me*₃). ²⁹Si (99 MHz, CDCl₃, 298 K, ppm): δ 17.5 (OSi*Me*₃).

VII. Proposed mechanism for the addition reaction of TMSCN to aldehyde or ketone to form cyanohydrin trimethylsilyl ethers catalyzed by 5. (Scheme S1)

References

- S1 S. A. Pourmousavi and H. Salahshornia, Bull. Korean Chem. Soc. 2011, 32, 1575–1578.
- S2 (a) N. Komatsu, M. Uda, H. Suzuki, T. Takahashi, T. Domae and M. Wada, *Tetrahedron Lett.* 1997, 38, 7215–7218; (b) M. Wada, T. Takahashi, T. Domae, T. Fukuma, N. Miyoshi and K. Smith, *Tetrahedron: Asymmetry* 1997, 8, 3939–3946.
- S3 (a) W. Su, Y. Kim, A. Ellern, I. A. Guzei and J. G. Verkade, *J. Am. Chem. Soc.* 2006, 128, 13727–13737; (b) S. M. Raders and J. G. Verkade, *Tetrahedron Lett.* 2009, 50, 5317–5321.
- S4 (a) M. T. Reetz, M. W. Drewes, K. Harms and W. Reif, *Tetrahedron Lett.* 1988, 29, 3295–3298; (b) J. K. Whitesell and R. Apodaca, *Tetrahedron Lett.* 1996, 37, 2525–2528.