Reversible Insertion/De-insertion of Carbon Dioxide into Pt(II)-Hydroxo Bonds

Tracy L. Lohr, Warren E. Piers* and Masood Parvez

Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4.

E-mail: wpiers@ucalgary.ca

Supporting Information

List of figures for supporting information:

S1. Ortep of 1-Me	S3
S2. Variable temperature ${}^{1}H$ NMR plot of 1-Ph to 4-Ph under 4 atm CO ₂	S4
S3. Plot of partial pressure of THF at temperatures above 288K	S5
Table S1. Henry's Law constants	S6
S4. Plot of Henry's Law constants dependence on temperature	S6
S5. ¹ H NMR of 1-Me (298K)	S8
S6. ² H NMR of 1-Me in C_6H_6 (298K)	S9
S7. IR of 1-Me-OH and 1-Me-OD	S9
S8. ¹ H NMR of 3 (205K)	S10
S9. DEPT-Q ¹³ C NMR of 3 (205K)	S11
S10. ¹ H NMR of 2 (298K)	S12
S11. ¹³ C NMR of 2 (298K)	S13
S12. IR of 2	S14
S13. ¹ H NMR of 4-Ph (238K)	S15
S14. DEPT-Q ¹³ C NMR of 4-Ph (238K)	S16
S15. ¹ H NMR of 4-Me (263K)	S17
S16. ¹ H NMR of 4-Me in the aromatic region (228K)	S18
S17. DEPT-Q ¹³ C NMR of 4-Me (263K)	S19

Table S2. Data collection and refinement data for 1 1-Me.

S19

General considerations.

An argon filled glove box was employed for manipulation and storage of all oxygen and moisture sensitive compounds. All reactions were performed on a double manifold high vacuum line using standard techniques.¹ Residual oxygen and moisture were removed from the argon stream by passage through an OxisorBW scrubber from Matheson Gas Products. Toluene, tetrahydrofuran, and hexanes solvents were dried and purified using the Grubbs/Dow purification system and stored in evacuated 500 mL bombs over sodium- tetraglyme/benzophenone ketyl. Pentane and dichloromethane were dried, distilled, and stored in an evacuated 500 mL bombs over sodiumtetraglyme/benzophenone ketyl (pentane) and calcium hydride (dichloromethane). All solvents were distilled prior to use. Water and deuterium oxide were degassed by 3 freeze-pump-thaw cycles and stored in a glovebox designated for water usage, or in a sealed glass bomb. d_6 -benzene and d_2 -methylene chloride were dried over and distilled from CaH₂, and was stored in glass bombs in a glove box. ¹H, and ¹³C chemical shifts were referenced to residual proton, and naturally abundant ¹³C resonance of the deuterated solvent, respectively. Assignments of chemical shifts are based on ¹H, ²H, ¹³C. DOF-COSY, ¹H, ¹³C-HMOC, and NOESY NMR spectra performed on Bruker RDO-400, DRY-400, UGI-400 and CFI-600 spectrometers. NMR spectra were processed and analyzed with MestReNova (v7.0.2-8636). High-resolution mass spectra were obtained using a Bruker Esquire 3000 spectrometer operating in electrospray ionization (ESI) mode. X-ray crystallographic analyses were performed on suitable crystals coated in Paratone 8277 oil (Exxon) and mounted on a glass fibre. Measurements were collected on a Nonius KappaCCD diffractometer by Dr. Masood Parvez of this department; full details can be found in the independently deposited crystallography information files (cif). Elemental analyses were performed using a Perkin-Elmer model 2400 series II analyzer by Johnson Li of this department. Absolute ethanol and Silver(1) oxide were purchased from Aldrich and used as received. Carbon dioxide, bone-dry grade 3.0, and ¹³CO₂ (99% ¹³C) were obtained from Praxair and Cambridge Isotopes and used as received. All NMR solvents were purchased from Cambridge Isotope Laboratories Inc. and dried according to the procedures outlined above or used as received. All air-sensitive compounds were stored in the glove box. *trans*- $[Pt(SMe_2)_2(CH_3)Cl]^2$ was synthesized according to reported procedures. Compound **1**, **2**, and **L** have been reported elsewhere.^{3,4} The IR of **3** was done as a THF film sandwiched between two NaCl plates and sealed from air in the glovebox by sealing the outer edges of the plates with black electrical tape.

Figure S1. X-ray molecular structure of **1-Me** (R factor 11.81%). Ellipsoids are shown at 30% probability and hydrogen atoms have been omitted for clarity. Due to low quality of data, structure is just used to show connectivity.

Figure S2. Variable Temperature ¹H NMR plot of the aromatic region of **1-Ph** and **4-Ph** under 4 atm ¹³CO₂.

Method for determination of $[CO_2]$ at different temperatures in THF^{5,6}:

The equilibrium concentration of carbon dioxide, [CO₂]_{equil}, as derived from two simultaneous equations:

$$(\text{mol } \text{CO}_2)_{\text{tot}} = \frac{p(\text{V1})}{\text{RT}} + [\text{CO}_2]_{\text{equil}}(\text{V2})$$
$$[\text{CO}_2]_{\text{equil}} = \frac{p([\text{CO}_2]_{\text{std}})}{1 \text{ atm}}$$

where p is the pressure of CO₂ above the solution, VI is the volume of gas space above the solution, *R* is the gas constant, *T* is the temperature, V2 is the volume of the solution, and $[CO_2]_{std}$ is the concentration of CO₂, in THF at temperature *T* when the pressure of CO₂ is 4 atm. The expression for $[CO_2]_{equil}$ is thus:

$$[CO_2]_{equil} = \frac{(total mol CO_2)([CO_2]_{std}RT)}{V1 + V2([CO_2]_{std}RT)}$$

where (total mol CO_2) is the original amount of CO_2 placed into the system. Exposure to CO_2 occurred at -196C, thus the assumption was made that the amount of CO_2 in the solution phase was zero, and the calculated (using the ideal gas law) total amount of CO_2 was made from the volume of gas space above the solution.

 $[CO_2]_{std}$ was calculated by a combination of Henry's Law to determine the mol fraction solubility of CO_2 in THF at under 4 atm of CO_2 at temperature *T*, with adjustments for the partial pressure changes of CO_2 and THF at different temperatures.

There is only data for the change in THF partial pressure at temperatures above room temp, but not below. To solve this, known data⁷ was graphed and extrapolated to find the partial pressures at low temperature:

Figure S3: Plot of Partial pressure of THF at temperatures above 288K.⁷

Henry's Law constants were found for CO_2 in THF at different temperatures from IUPAC solubility data series⁸ for Temperatures of 273K, 248K, 223K, and 198K with corresponding mol fraction in solution values (x):

 Table S1. Henry's Law Constants

Plotting the relationship between Henry's Constant and Temperature (while maintaining constant pressure) gives the above graph. Using the above equation allowed for the determination of Henry's constants at all of the different temperatures of the experiment. Applying Henry's Law at each temperature to determine the mol fraction of CO_2 in solution, and knowing the total moles of CO_2 in the system, $[CO_2]$ std was then determined. Plugging this back into the equation at the beginning, $[CO_2]_{equil}$ can be found for every temperature:

	[CO ₂] _{equil}
Т	1	4ol/L
	298	2.700
	288	2.704
	278	2.709
	268	2.712
	258	2.714
	248	2.716
	293	2,702

PtPhOH

				1/T K-1x	
Temp		[CO2]eq	Keq	1000	lnKeq
	298	2.6996	0.370425248	3.355704698	0.993103614
	293	2.702	0.47742413	3.412969283	0.739350021
	288	2.705	0.665434381	3.472222222	0.407315247
	278	2.709	1.476559616	3.597122302	0.389714798
	268	2.712	3.10840708	3.731343284	1.134110402
	258	2.714	7.332350774	3.875968992	1.99229617
	248	2.716	19.88217968	4.032258065	2.989823837

PtMeOH

				1/T K-1x	
Temp		[CO2]eq	Keq	1000	lnKeq
	298	2.6996	1.055711957	3.355704698	0.05421538
	288	2.7047	2.255333309	3.472222222	0.813297771
	278	2.709	6.34551495	3.597122302	1.847748256
	268	2.712	15.36873156	3.731343284	2.732335027

Thermodynamic Parameters:

From 1-Ph to 4-Ph :	From 1-Me to 4-Me :
$\Delta H^{o} = -11.8(4) \text{ Kcalmol}^{-1}$	$\Delta H^{o} = -14(2) \text{ Kcalmol}^{-1}$
$\Delta S^{\circ} = -41(1) \text{ e.u.}$	$\Delta S^{o} = -48(7) \text{ e.u.}$

Spectra of New Compounds:

Figure S5. ¹H NMR Spectrum of 1-Me in thf-d8 (298K)

Figure S6. ²H NMR Spectrum of 1-Me-OD in C₆H₆ (298K)

Figure S7. IR Spectra of 1-Me-OD (top) and 1-Me-OH (Bottom)

Figure S8. ¹H NMR Spectrum of 3 in thf-d8 (205K)

Figure S9. DEPT-Q ¹³C NMR of 3 in thf-d8 (205K)

Figure S10. ¹H NMR Spectrum of 2 in 50:50 thf-d8:CD₂Cl₂ (wet in air, 298K, x = solvent)

Figure S11. ¹³C NMR of **2** in 50:50 thf-d8:CD₂Cl₂ (wet in air, 298K)

Figure S12. IR Spectrum of 2 (NaCl plates)

Figure S13. ¹H NMR Spectrum of 4-Ph in thf-d8 (238K)

Figure S14. DEPT-Q ¹³C NMR of 4-Ph in thf-d8 (238K)

Figure S15. ¹H NMR Spectrum of 4-Me in thf-d8 (263K)

Figure S16. ¹H NMR Spectrum of the aromatic region of 4-Me in thf-d8 (228K)

Figure S17. DEPT-Q ¹³C NMR of 4-Me in thf-d8 (268K)

Table S2. Data Collection and Structure Refinement Details for 1-Me

	1-Me
formula	$C_{73}H_{83}N_2OPt$
fw	1199.50
crystal system	triclinic
space group	P-1
a, Å	10.442(2)
b, Å	12.460(3)
c, Å	32.990(7)
α, deg	96.55(3)
β, deg	91.94(3)
γ, deg	111.94(3)
V, Å ³	3941.8(17)
Z	2
Т, К	293

λ, Å	0.71073
$\rho_{calc}, g/cm^3$	0.96
F(000)	1100.0
μ , mm ⁻¹	1.813
Data Completeness	0.734
Number of reflections	10262
θ range, deg	3.2-25.05
$R_1 (I > 2\sigma(I))$	0.1181
wR ₂ (all data)	0.3164

References for Supporting Information:

- 3. Lohr, T.L.; Piers, W.E.; Parvez, M. Inorganic Chemistry, 2012, 51, 4900-4902.
- 4. Lohr, T.L.; Piers, W.E.; Parvez, M. Chemical Science, 2013, 4, 770-775.
- 5. Thompson, M.E, Baxter, S.E., Bulls, A.B., Burger, B.J., Nolan, M.C., Santarsiero, B.D., Schaefer, W.P., Bercaw, J.E. J. Am. Chem. Soc., **1987**, 109, 203-219.
- 6. Zhu, G., Janak, K.E., Parkin, G. Chem Commun. 2006, 2501-2503.

7. Partial Pressure of THF at different temperatures: The UNIFAC Consortium: http://www.ddbst.com/en/EED/PCP/VAP_C159.php

^{1.} Burger, B. J.; Bercaw, J. E. *Experimental Organometallic Chemistry*; American Chemical Society: Washington, D.C., 1987.

^{2.} Hill, G.S.; Irwin, M.J; Levy, C.J.; Rendina, L.M.; Puddephatt, R.J. Inorganic Syntheses, 1998, 32, 151.

^{8.} IUPAC Solubility Data Series, Volume 50, Carbon dioxide in non-aqueous solvents at pressures less than 200 KPa. (pg 237-238).