Electronic Supplementary Information for

Development of singlet oxygen-responsive phosphorescent ruthenium(II) complexes

Zhiqiang Ye,* Bo Song, Yuejiao Yin, Run Zhang, Jingli Yuan*

State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China

*Corresponding authors. Tel/Fax: +86-411-84986041. E-mail addresses: yezq@dlut.edu.cn (Z.Y.); jingliyuan@aliyun.com (J.Y.).

Experimental Details

Materials and physical measurements. RuCl₃·3H₂O and anthracene-9-carboxaldehyde were purchased from Acros Organics (Belgium). cis-Ru(II)(bpy)₂Cl₂·2H₂O, and the compound **1** and **2** used for the synthesis of An-bpy were synthesized according to the literature methods.^{S1-S3} The reactive oxygen/nitrogen species (ROS/RNS) including ¹O₂, H₂O₂, ClO⁻, ⁻OH, NO, ONOO⁻ and O^{2-.} were prepared using the previous methods.^{S4} Unless otherwise stated, all chemical materials were purchased from commercial sources and used without further purification.

¹H NMR spectra were recorded on a Bruker Avance spectrometer (400 MHz). MS spectra were measured on a Q-TOF Micro MS spectrometer. Absorption spectra were measured on a Perkin-Elmer Lambda 35 UV-vis spectrometer. Elemental analysis was carried out on a Vario-EL

analyser. Phosphorescence spectra were measured on a Perkin-Elmer LS 50B luminescence spectrometer with excitation and emission slits of 10 nm.

Syntheses of the Ru(II) Complexes. The reaction pathway for the synthesis of $[Ru(bpy)_{3-n}(An-bpy)_n](PF_6)_2$ (n = 1, 2, 3) is shown in Scheme S1.

Scheme S1. Reaction pathway for the synthesis of $[Ru(bpy)_{3-n}(An-bpy)_n](PF_6)_2$ (n = 1, 2, 3). The experimental details are described as follows.

Synthesis of An-bpy. After a solution of compound 2 (10.4 g, 30 mmol) and ammonium acetate (28 g) in 100 mL of acetic acid was refluxed for 0.5 h, compound 1 (6.0 g, 30 mmol) was slowly added within 1.5 h. The reaction mixture was refluxed for 16 h, then cooled to room temperature. The pH of the mixture was adjusted to ~7 with 15% NaOH, and then the mixture was extracted with CH₂Cl₂ (3×50 mL). The organic phase was dried with Na₂SO₄ and evaporated. After purification by silica gel column chromatography with CH₂Cl₂/CH₃OH (100:1, v/v) as eluent, An-bpy was obtained as a brown solid (1.0 g, 10% yield). ¹H NMR (400 MHz, CDCl₃): δ = 7.41 (m, 3H), 7.51 (m, 3H), 7.63 (d, *J* = 8.8 Hz, 2 H), 7.94 (m, 1H), 8.09 (d, *J* = 8.4 Hz, 2 H), 8.57 (s, 1 H), 8.61 (s, 1 H), 8.65 (d, *J* = 6.8 Hz, 2 H), 8.96 (d, *J* = 4.8 Hz, 1 H). MS (*m/z*): 333.0 ([M+H]⁺).

Synthesis of $[Ru(bpy)_2(An-bpy)](PF_6)_2$. A mixture of An-bpy (170 mg, 0.5 mmol) and *cis*-Ru(II)(bpy)_2Cl_2·2H_2O (240 mg, 0.5 mmol) in 50 mL of ethanol was refluxed for 8 h. After the solvent was evaporated, the residue was purified by silica gel column chromatography using CH_3CN-H_2O-KNO_3 (sat.) (100:10:1, v/v/v) as eluent. A fraction containing the target product was collected, and the solvent was evaporated. The resulting solid was dissolved in 5.0 mL of ethanol-water (1:1), and then a solution of NH₄PF₆ (2 mM) was added dropwise to give a red precipitate. The product was filtered, washed with small amount of water, and dried. Complex [Ru(bpy)_2(An-bpy)](PF_6)_2 was obtained (360 mg, 70% yield). ¹H NMR (400 MHz, CD_3CN): $\delta = 7.37$ (m, 5H), 7.48 (m, 6H), 7.77 (m, 5H), 7.89 (d, J = 8.0 Hz, 1 H), 7.96 (d, J = 8.0 Hz, 1 H), 8.02 (m, 1H), 8.09 (m, 3H), 8.18 (m, 3H), 8.45 (d, J = 8.0 Hz, 1 H), 8.55 (m, 4H), 8.65 (s, 1H), 8.75 (s, 1H). MS (m/z): 891.1 ([M-PF₆]⁺), 373.1 ([M-2PF₆]²⁺). Elemental analysis (%) calcd. for C₄₄H₃₂F₁₂N₆P₂Ru: C 51.02, H 3.11, N 8.11; found: C 50.89, H 3.28, N, 8.07.

Synthesis of $[Ru(An-bpy)_2Cl_2]$. After An-bpy (390 mg, 1.17 mmol) and LiCl (150 mg, 3.48 mmol) were added into 4 mL of DMF containing RuCl₃·3H₂O (120 mg, 0.58 mmol), the mixture was refluxed for 8 h under an argon atmosphere. The solution was cooled to room temperature, then 20 mL acetone was added, and the reaction mixture was stored at -20 °C overnight. The precipitate was filtered, washed with water (3 × 10 mL) and ethyl ether (2 × 10 mL), and dried. The obtained product was directly used for the synthesis of $[Ru(bpy)(An-bpy)_2](PF_6)_2$ without further purification.

Synthesis of $[Ru(bpy)(An-bpy)_2](PF_6)_2$. A mixture of $[Ru(An-bpy)_2Cl_2]$ (148 mg, 0.18 mmol) and bpy (27.6 mg, 0.18 mmol) in 30 mL of ethanol was refluxed for 8 h. After the solvent was evaporated, the residue was purified by silica gel column chromatography using CH₃CN-H₂O-KNO₃ (sat.) (100:10:1, v/v/v) as eluent. A fraction containing the target product was collected, and the solvent was evaporated. The resulting solid was dissolved in 5.0 mL of ethanol-water (1:1), and then a solution of NH₄PF₆ (2 mM) was added dropwise to give a red precipitate. The product was filtered, washed with small amount of water, and dried. Complex $[Ru(bpy)(An-bpy)_2](PF_6)_2$ was obtained (105 mg, 60% yield). ¹H NMR (400 MHz, CD₃CN): $\delta = 7.39$ (m, 7H), 7.53 (m, 6H), 7.61 (m, 4H), 7.88 (m, 4H), 8.01 (m, 4H), 8.15 (m, 7H), 8.46 (m, 2H), 8.61 (m, 2H), 8.73 (m, 3H), 8.77 (s, 1H). MS (m/z): 1067.1 ($[M-PF_6]^+$), 461.1 ($[M-2PF_6]^{2+}$). Elemental analysis (%) calcd. for C₅₈H₄₀F₁₂N₆P₂RuH₂O: C 56.64, H 3.44, N 6.83; found: C 57.01, H 3.74, N, 6.45.

Synthesis of [Ru(An-bpy)₃](PF₆)₂. A solution of An-bpy (81 mg, 0.24 mmol) in 20 mL ethanol was added into 4 mL of water containing RuCl₃ 3 H₂O (17 mg, 0.08mmol). After the solution was refluxed for 24 h under an argon atmosphere, the solvent was evaporated, and the residue was purified by silica gel column chromatography using CH₃CN-H₂O-KNO₃ (sat.) (80:10:1, v/v/v) as eluent. A fraction containing the target product was collected, and the solvent was evaporated. The resulting solid was dissolved in 5.0 mL of ethanol-water (1:1), and then a solution of NH₄PF₆ (2 mM) was added dropwise to give a red precipitate. The product was filtered, washed with small amount of water, and dried. Complex [Ru(An-bpy)₃](PF₆)₂ was obtained (85 mg, 75% yield). ¹H NMR (400 MHz, CD₃CN): δ = 7.36 (m, 3H), 7.49 (m, 3H), 7.54 (m, 18H), 7.73 (d, *J* = 4.0 Hz, 3H), 8.11 (m, 3H), 8.18 (m, 9H), 8.54 (m, 3H), 8.79 (d, *J* = 12.0 Hz, 6H). MS (m/z): 1243.2 ([M-PF₆]⁺), 549.1 ([M-2PF₆]²⁺). Elemental analysis (%) calcd. for C₇₂H₄₈F₁₂N₆P₂Ru·2H₂O: C 60.72, H 3.68, N 5.90; found: C 61.13, H 4.12, N, 5.62.

Reaction of $[Ru(bpy)_{3-n}(An-bpy)_n](PF_6)_2$ with 1O_2 . All the experiments were carried out in 0.1 M carbonate buffer of pH 10.5 using Na₂MoO₄-H₂O₂ system as a 1O_2 source.^{S4} After various concentrations of H₂O₂ were added into the buffer containing $[Ru(bpy)_{3-n}(An-bpy)_n]^{2+}$ (n = 1, 2, 3)

(10 μ M) and Na₂MoO₄ (1.0 mM), respectively, the solutions were stirred for 3 h at room temperature, and then their phosphorescence spectra were measured on the Perkin-Elmer LS 50B luminescence spectrometer.

Figure S1. TOF-MS spectrum of the product of $[Ru(bpy)_2(An-bpy)](PF_6)_2$ reacted with ${}^{1}O_2$.

Figure S2. UV-vis absorption spectra of $[Ru(bpy)(An-bpy)_2](PF_6)_2$ (A, solid line), $[(An-bpy)_3](PF_6)_2$ (B, solid line), and their corresponding endoperoxides (dot lines) in 0.1 M carbonate buffer of pH 10.5.

complex	$\lambda_{abs,max}$	$\lambda_{em,max}$	φ ^a	8455nm
	(nm)	(nm)	(%)	$(cm^{-1}M^{-1})$
$[Ru(bpy)_2(An-bpy)]^{2+}$	455	627	0.31	1.44×10^{4}
$[Ru(bpy)_2(EP-An-bpy)]^{2+}$	455	627	2.30	1.32×10^{4}
$[Ru(bpy)(An-bpy)_2]^{2+}$	455	615	0.11	1.51×10^{4}
$[Ru(bpy)(EP-An-bpy)_2]^{2+}$	455	615	1.40	1.32×10^{4}
$[Ru(An-bpy)_3]^{2+}$	455	615	0.06	2.04×10^{4}
$[Ru(EP-An-bpy)_3]^{2+}$	455	615	1.70	1.55×10^{4}

Table S1. Phosphorescence properties of $[Ru(bpy)_{3-n}(An-bpy)_n]^{2+}$ and $[Ru(bpy)_{3-n}(EP-An-bpy)_n]^{2+}$ (n = 1, 2, 3) in 0.1 M carbonate buffer of pH 10.5.

^aPhosphorescence quantum yield was measured by using $[Ru(bpy)_3]Cl_2$ ($\phi \equiv 2.8\%$) as a standard.^{S5}

Figure S3. Calibration curves for the phosphorescence detection of ${}^{1}O_{2}$ by using $[Ru(bpy)(An-bpy)_{2}](PF_{6})_{2}$ (A, 5.0 μ M) and $[(An-bpy)_{3}](PF_{6})_{2}$ (B, 5.0 μ M) as probes, respectively.

References

(S1) M. E. Marmion and K. J. Takeuchi, J. Am. Chem. Soc. 1988, 110, 1472.

(S2) L. A. MacManus-Spencer, D. E. Latch, K. M. Kroncke and K. McNeill, *Anal. Chem.*, 2005, 77, 1200.

(S3) B. P. Sullivan, D. J. Salon and T. J. Meyer, Inorg. Chem., 1978, 17, 3334.

- (S4) (a) B. Song, G. L. Wang and J. L. Yuan, Chem. Commun., 2005, 3553; (b) B. Song, G. L.
- Wang, M. Q. Tan and J. L. Yuan, New J. Chem., 2005, 29, 1431; (c) B. Song, G. L. Wang, M. Q.

Tan and J. L. Yuan, J. Am. Chem. Soc., 2006, 128, 13442.

(S5) A. Juris and V. Balzani, Coord. Chem. Rev. 1988, 84, 85.