Electronic supplementary information

Electron transfer and binding affinities in an electrochemically controlled ligand transfer system containing zinc porphyrin and a meso-phenylenediamine substituent

Hsu-Chun Cheng,^{*a*} Peter Ping Yu Chen*^{*b*} and Yuhlong Oliver Su*^{*a*}

^a Department of Applied Chemistry, National Chi Nan University, 1, University Road, Puli, Nantou, 545, Taiwan
^b Department of Chemistry, National Chung Hsing University, 250, Kuo Kuang Road,

Taichung, 402, Taiwan

* To whom correspondence should be addressed. E-mail: yosu@ncnu.edu.tw ; pychen@dragon.nchu.edu.tw

Supporting information

1. Electrochemical and spectral results	S2
2. Spectral titration methods	S11
3. ¹ H NMR and ¹³ C NMR data	S12

Electrochemical and spectral results

Fig S1 Cyclic voltammgrams of 1.0×10^{-3} M ZnTMP-Ph₂-PD in CH₂Cl₂ containing 0.1 M TBAP in the presence of (A) 0.0–1.0 equiv. and (B) 1.0–2.0 equiv. of HIm. Working electrode: glassy carbon. Scan rate: 0.1 Vs⁻¹.

Fig S2 Spectral changes of 2.0×10^{-4} M **PD** in CH₂Cl₂ containing 0.1 M TBAP at various applied potentials (0.00V~1.26V).

Fig S3 Spectral changes of 2.0×10^{-4} M **ZnTMP** in CH₂Cl₂ containing 0.1 M TBAP at various applied potentials (0.00V~1.21V).

Fig S4 The absorption spectra of 4.0×10^{-5} M **ZnTMP-Ph-PD** in presence of 0.75 equiv. in CH₂Cl₂ containing 0.1 M TBAP.

Fig S5 The absorption spectra of 4.0×10^{-5} M **ZnTMP-PD** in presence of 0.75 equiv. in CH₂Cl₂ containing 0.1 M TBAP.

Fig S6 Spectral changes of 4.0×10^{-5} M **ZnTMP-Ph₂-PD** in CH₂Cl₂ containing 0.1 M TBAP at $E_{appl.} = +0.00V \sim +0.83V$

Fig S7 Spectral changes of 4.0×10^{-5} M **ZnTMP-Ph₂-PD** in presence of 0.75 equiv. in CH₂Cl₂ containing 0.1 M TBAP at $E_{appl.} = +0.00V \sim +0.83V$

Fig. S8 Absorption spectral change of **ZnTMP-Ph-PD** in the presence of various concentrations of imidazole.

Fig. S9 Absorption spectral change of **ZnTMP-Ph₂-PD** in the presence of various concentrations of imidazole.

Fig S10 EPR spectra of $N2^{+\bullet}$ and $PD^{+\bullet}$ at 298K..

Spectral titration methods

According to the following equation, the binding constants would be estimated by photometric titration.¹⁹

$$ZnP + qL \longrightarrow ZnP(L)_q \qquad K_f = \frac{[ZnP(L)_q]}{[ZnP][L]^q}$$

$$\log\left[\left(A_x - A_i\right)/(A_\infty - A_x)\right] = q \log[L] + \log K_f \tag{1}$$

where [*L*] is concentration of the free-ligand, A_x is absorbance of zinc porphyrin at various imidazole concentration, A_i is absorption band in absence of imidazole, A_{∞} is the absorption band in the presence of saturated imidazole, *q* is the number of binding ligands, and K_f is a binding constant.

As for the binding constants between HIm and oxidized zinc porphyrins were calculated from the potential shift of CVs as described in the following method.²⁰

$$ZnP \xrightarrow{-ne^{-}} ZnP^{n+} + pL \xrightarrow{-} ZnP^{+\bullet}(L)_{p} \quad K_{f}^{+} = \frac{[ZnP^{+\bullet}(L)_{p}]}{[ZnP] [L]^{p}}$$
$$(E_{1/2})_{u} = (E_{1/2})_{c} - (0.059/n) [\log (K_{f}/K_{f}^{+}) - \log [L]^{n-q}] \quad (2)$$

where $(E_{1/2})_u$ and $(E_{1/2})_c$ are the half potential of uncomplexed and complexed species, [*L*] is the ligand concentration, *p* and *q* are the number of ligation for the neutral and cation radical species, K_f and K_f^+ are the binding constant of $\text{ZnP}(L)_q$ and $\text{ZnP}^{+\bullet}(L)_p$, and n is the number of electron transfer in the electrochemical reaction.

Figure S11. H¹ NMR spectra for 4'-bromo-4-triphenylbenzaldehyde.

Figure S12. C¹³ NMR spectra for 4'-bromo-4-triphenylbenzaldehyde.

Figure S13. H¹ NMR spectra for Zn(Ph₂-Br)(mesityl)₃P.

Figure S14. C¹³ NMR spectra for Zn(Ph₂-Br)(mesityl)₃P.

Figure S15. H¹ NMR spectra for Zn(Ph₃-Br)(mesityl)₃P.

Figure S16. C¹³ NMR spectra for Zn(Ph₃-Br)(mesityl)₃P.

Figure S17. H¹ NMR spectra for ZnTMP-Ph-PD.

Figure S18. C¹³ NMR spectra for ZnTMP-Ph-PD.

Figure S19. H¹ NMR spectra for ZnTMP-Ph₂-PD.

Figure S20. C¹³ NMR spectra for ZnTMP-Ph₂-PD.