Supporting Information

Chiral Bis(phthalocyaninato) Yttrium Double-Decker Complexes. Synthesis,

Structure, Spectroscopy, and Electrochemistry

Hang Zhou, Kang Wang, Dongdong Qi, and Jianzhuang Jiang,*

Fig. S1. Observed (left) and simulated (right) MALDI-TOF mass spectra of 1.

Fig. S2. (a) ¹H NMR and (b) ¹H-¹H COSY for **1** recorded in $CDCl_3$ in the presence of hydrazine hydrate. * denotes a solvent impurity.

Fig. S3. IR spectra of **1** and **2** in the region of 400-4000 cm^{-1} recorded in KBr pellets.

Fig. S4. Electronic absorption spectra of 1, 2, and $Y(Pc)_2$ in toluene.

Fig. S5. Cyclic voltammogram of 1 recorded in CH_2Cl_2 containing 0.1 M [NBu₄][ClO₄] at a scan rate 40 mV s⁻¹.

Table S1. ¹H NMR data (δ) for **1** and **2**.

Signals for unsubstituted Pc			Signals for Pc(OBNP) ₄			
compound	$Pc-H_{\alpha}$	$Pc-H_{\beta}$	H_{lpha}	inner set of binaphthyl substituents	outer set of binaphthyl substituents	
1	_	_	8.40 (s, 8 H) 8.00 (s, 8 H)	8.17(d, 8 H) 7.43(d, 8 H) 7.87 (d, 8 H) 6.75~6.86 (m, 8 H) ^[a]	7.16 (d, 8 H) 7.00~7.07 (m, 16 H) ^[a] 6.68~6.93 (m, 40 H) ^[a]	
2	9.07 (d, 4 H) 8.89 (d, 4 H)	8.39 ~ 8.42 (m, 4 H) ^[a] 8.28 ~ 8.32 (m, 4 H)	9.06 (s, 4 H) 8.73 (s, 4 H)	8.78 (d, 4 H) 8.39 (d, 4 H) ^[a] 8.51 (d, 4 H) 7.72 ~ 7.82 (m, 4 H) ^[a]	7.84(d, 4 H) 7.67 ~ 7.71 (m, 4 H) 8.00 ~ 8.05 (m, 8 H) ^[a] 7.72 ~ 7.82 (m, 8 H) ^[a] 7.51 ~ 7.58 (m, 8 H) ^[a]	

^[a] These signals overlap with each other.

Structural parameter	(<i>R</i>)-1	(<i>S</i>)-1	
Y-N ₄ (Pc) plane distance (Å)	1.383	1.390	
N ₄ (Pc)-N ₄ (Pc) plane distance (Å)	2.77	2.78	
dihedral angle between two N_4 planes(°)	0	0	
average dihedral angle ϕ for the Pc ring(°)^a	5.10	5.35	
average twist angle(°) ^b	42.49	43.69	

Table S2. Comparison of the structural data for (*R*)- and (*S*)-1.

^a The average dihedral angle of the individual isoindole rings with respect to the corresponding N_4 mean plane. ^b Defined as the rotation angle of one macrocycle away from the eclipsed conformation of the two macrocycles.

compound	$(R)-1^{a}$	(<i>S</i>)- 1 ^a	
Formula	$C_{224}H_{108}N_{16}O_{16}Y$	$C_{224}H_{108}N_{16}O_{16}Y$	
F.W.	3338.17	3368.17	
system	tetragonal	tetragonal	
space group	I_4	I_4	
a	21.5507(5)	21.6634(5)	
b	21.5507(5)	21.6634(5)	
с	22.5192(14)	22.6033(14)	
α	90	90	
β	90	90	
γ	90	90	
Z	2	2	
volume	10458.7(7)	10607.8(7)	
$F_{cald} / g cm^{-3}$	1.070	1.056	
F000	3462	3470	
$R_{int} I > 2\theta$	0.0636	0.0609	
$R_{w2} I > 2\theta$	0.1554	0.1507	
<i>R</i> _{int} all	0.0676	0.0756	
R_{w2} all	0.1593	0.1601	
S	1.055	1.092	
Absolute structure parameter	0.055(16)	0.036(19)	
CCDC number	941795	941796	

Table S3. C	Crystal data	and structure	refinements	of (<i>R</i>)-	and (<i>S</i>)-1.
-------------	--------------	---------------	-------------	------------------	---------------------

^aIn these structures, the unit cell includes a large region of disordered solvent molecules, which could not be modeled as discrete atomic sites. We employed PLATON/SQUEEZE to calculate the diffraction contribution of the solvent molecules and, thereby, to produce a set of solvent-free diffraction intensities. For (*R*)-1, the SQUEEZE calculations showed a total solvent accessible area volume of 1731 Å³ and the residual electron density amounted to 481 electron per unit cell, corresponding to nearly 8 molecules of CH₂Cl₂ and 8 molecules of CH₃OH (about 2 CH₂Cl₂ and 2 CH₃OH molecules per asymmetric unit). As for (*S*)-1, the SQUEEZE calculations showed a total solvent accessible area volume of 1789 Å³ and the residual electron density amounted to 335 electron per unit cell, corresponding to nearly 8 molecules of CH₂Cl₂ molecules per asymmetric unit).