Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2012

# **Supporting Information for**

## Sunlight induced photocycloaddition and host-guest property of self-assembled

### organometallic macrocycles based on a versatile building block

Tong Wu, Yue-Jian Lin and Guo-Xin Jin\*

Shanghai Key Laboratory of Molecular Catalysis and Innovative Material, Department of Chemistry,

Fudan University, Shanghai, 200433, P. R. China.

E-mail: gxjin@fudan.edu.cn

### **S1**.

|                                           | 2b                                       | <b>3</b> a                         | 3b                                 | 4b                             |
|-------------------------------------------|------------------------------------------|------------------------------------|------------------------------------|--------------------------------|
| Formula                                   | $C_{98}H_{104}F_{12}N_{16}O_{14}Rh_4S_4$ | $C_{84}H_{116}F_6N_8O_{14}Ir_2S_2$ | $C_{84}H_{116}F_6N_8O_{14}Rh_2S_2$ | $C_{68}H_{70}F_6N_8O_7Rh_2S_2$ |
| $F_w$                                     | 2497.85                                  | 2024.36                            | 1845.78                            | 1421.12                        |
| Crystal system                            | Triclinic                                | Monoclinic                         | Monoclinic                         | Orthorhombic                   |
| space group                               | P-1                                      | C2/c                               | C2/c                               | Fdd2                           |
| <i>a</i> (Å)                              | 9.1607(8)                                | 36.2926(8)                         | 36.307(3)                          | 31.441(5)                      |
| <i>b</i> (Å)                              | 13.0306(11)                              | 16.2805(4)                         | 16.2368(14)                        | 17.427(3)                      |
| <i>c</i> (Å)                              | 22.4758(18)                              | 28.4835(6)                         | 28.488(2)                          | 23.221(4)                      |
| $\alpha(\degree)$                         | 91.9670(10)                              | 90                                 | 90                                 | 90                             |
| $eta(\degree)$                            | 96.5700(10)                              | 123.0740(10)                       | 123.1350(10)                       | 90                             |
| $\gamma(\degree)$                         | 102.4650(10)                             | 90                                 | 90                                 | 90                             |
| V (Å <sup>3</sup> )                       | 2597.7(4)                                | 14102.8(6)                         | 14063(2)                           | 12723(3)                       |
| Ζ                                         | 1                                        | 8                                  | 8                                  | 8                              |
| $D_{\rm c}~({\rm Mg}/{\rm m}^3)$          | 1.597                                    | 1.907                              | 1.744                              | 1.484                          |
| $\mu$ (Mo-K $\alpha$ )(mm <sup>-1</sup> ) | 0.796                                    | 8.565                              | 0.626                              | 0.664                          |
| <i>F</i> (000)                            | 1268                                     | 8224                               | 7712                               | 5824                           |
| $\theta$ range (°)                        | 0.914 ~ 27.678                           | $2.906 \sim 67.997$                | $1.486 \sim 27.544$                | $1.60 \sim 26.10$              |
| Limiting indices (hkl)                    | -11, 11; -14, 17; -28, 29                | -42, 39; -19, 16; -30, 33          | -47, 44; -21, 16; -31, 36          | -33, 38; -21, 21; -28, 27      |
| Reflections collected                     | 19301                                    | 35496                              | 51385                              | 20655                          |
| Independent reflections                   | 11935                                    | 12189                              | 16108                              | 6209                           |
| $R_{\rm int}$                             | 0.0162                                   | 0.0504                             | 0.0887                             | 0.1020                         |
| Completeness to $\theta$ (°)              | 98.6 %                                   | 95.0 %                             | 99.6 %                             | 99.8 %                         |
| Data / restraints / parameters            | 11935 / 28 / 735                         | 12189 / 42 / 872                   | 16108 / 16 / 835                   | 32977 / 254 / 1515             |
| Goodness-of-fit on $F^2$                  | 1.047                                    | 1.010                              | 0.933                              | 0.963                          |
| $R_1^{a}, wR_2^{a} [I > 2\sigma(I)]$      | 0.0338, 0.0942                           | 0.0870, 0.2003                     | 0.0599, 0.1364                     | 0.0696, 0.1527                 |
| $R_1$ , wR <sub>2</sub> (all data)        | 0.0435, 0.1076                           | 0.0976, 0.2103                     | 0.1218, 0.1599                     | 0.1212, 0.1740                 |

Table 1 Crystal data and structure refinament of 2b 3a 3b and 4b

<sup>*a*</sup>  $R_1 = \Sigma ||Fo| - |Fc|| / \Sigma |Fo|; wR_2 = [\Sigma w (F_o^2 - F_c^2)^2 / \Sigma w (F_o^2)^2]^{1/2}.$ 

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is © The Royal Society of Chemistry 2013

#### **S2.** Synthetize of the ligand $L_{2:}$



The mixture of 1,4-bis(bromomethyl)benzene 6 (1.3 g, 4.93 mmol) and triethylphosphite (20 mL) was heated to reflux for 5 h. Afterwards, access triethylphosphite was removed under the reduced pressure. The remaining white slurry was poured into a large amount of hexanes to extract residual remains of triethylphosphite. A white solid of compound **1** was obtained by filtration (1.79 g, 4.73 mmol, 96%).

The solution of compound **1** (0.76 g, 2.0 mmol), and 4-Bromobenzaldehyde (0.82 g, 4.4 mmol) in THF (10 mL) was stirred at room temperature overnight after the slow addition of potassium tert-butoxide (1 M in THF, 4.2 mL, 4.2 mmol) under nitrogen atmosphere. The reaction was quenched with sat. NH4Cl aq. and was extracted with ethyl acetate three times. The combined organic layers were washed with brine, dried over anhydrous  $Na_2SO_4$ , concentrated in vacuo. The residue was purified by silica gel column chromatography to give **2** as a white crystal.

The imidazole (0.14g, 2.1 mmol) was added into the toluene solution of compound **2** (0.44g, 1.0 mmol) then stirred for 24 h under reflux. The green yellow powder of compound **3** was obtain after wash and recrystallization.

#### **S3.** The characterization data of complex **2a~4b**:

Data of complex **2a**: IR (KBr disk): v = 3123.3, 1602.8, 1532.1, 1448.4, 1354.1, 1262.4, 1223.6, 1153.4, 1075.2, 1030.1, 822.3, 759.3, 638.42 cm<sup>-1</sup>. <sup>1</sup>H-NMR (400 MHz, [D<sub>6</sub>]-DMSO, 25 °C, TMS):  $\delta = 7.96$  (q, 8H, Ar(BiBzIm)-H), 7.62 (s, 4H, imidazolyl(N-C\*-N)-H), 7.36 (q, 8H, Ar(BiBzIm)-H), 7.13 (s, 4H, imidazolyl(Rh-N-C\*-C)-H), 6.67 (s, 8H, phenyl(DiBzIm)-H), 5.73 (s, 4H, imidazolyl(Rh-N-C-C\*)-H), 1.82 (s, 60H; Cp\*-H) ppm. Elemental analysis (%) calcd. for C<sub>98</sub>H<sub>104</sub>F<sub>12</sub>N<sub>16</sub>O<sub>14</sub>Ir<sub>4</sub>S<sub>4</sub>: C 41.23; H 3.67; N 7.85; Found (%): C 41.28, H 3.75, N 7.69.

Data of complex **2b**: IR (KBr disk): v = 3123.1, 1602.6, 1533.1, 1448.4, 1354.0, 1262.8, 1223.6, 1153.4, 1075.0, 1030.1, 822.3, 759.3, 638.42 cm<sup>-1</sup>. <sup>1</sup>H-NMR (400 MHz, [D<sub>6</sub>]-DMSO, 25 °C, TMS):  $\delta = 8.01$  (q, 8H, Ar(BiBzIm)-H), 7.60 (s, 4H, imidazolyl(N-C\*-N)-H), 7.43 (q, 8H, Ar(BiBzIm)-H), 7.17 (s, 4H, imidazolyl(Rh-N-C\*-C)-H), 6.67 (s, 8H, phenyl(DiBzIm)-H), 5.71 (s, 4H, imidazolyl(Rh-N-C-C\*)-H), 1.87 (s, 60H; Cp\*-H) ppm. Elemental analysis (%) calcd. For  $C_{98}H_{104}F_{12}N_{16}O_{14}Rh_4S_4$ : C 47.12; H 4.20; N 8.97; Found (%): C 47.25, H 4.14, N 8.87.

Data of complex **3a**: IR (KBr disk, cm-1): v = 3123.5, 1604.1, 1523.4, 1451.2, 1353.9, 1256.1, 1224.6, 1158.5, 1125.4, 1068.7, 1031.5, 741.0 cm<sup>-1</sup>. <sup>1</sup>H NMR (400 MHz, [D<sub>6</sub>]-DMSO, 25 °C, TMS): 2H. imidazolyl(N-C\*-N)-H), 4H, Ar(BiBzIm)-H), 8.45 (s. 7.92 (q, 7.39 (s, 2H. imidazolyl(Rh-N-C\*-C)-H), 7.37 (q, 4H, Ar(BiBzIm)-H), 7.27 (d, 4H, J = 8.0 Hz, side-phenyl-H), 7.20 (d, 4H, J = 12.0 Hz, side-phenyl-H), 7.12 (s, 4H, centra-phenyl-H), 6.65 (d, 2H, J = 12.0 Hz, olefin-H), 6.57 (d, 2H, J = 12.0 Hz, olefin-H), 5.72 (s, 2H, imidazolyl (Rh-N-C-C\*)-H) 1.82 (s, 30H, Cp\*-H) ppm. Elemental analysis calcd (%) for  $C_{68}H_{70}F_6N_8O_7Ir_2S_2$ : C 48.79; H 4.22; N 6.69. Found: C 48.84; H 4.31; N 6.68.

Data of complex **3b**: IR (KBr disk, cm<sup>-1</sup>): v = 3123.9, 1604.9, 1523.4, 1451.1, 1353.9, 1256.1, 1224.2, 1158.7, 1125.4, 1069.7, 1031.5, 741.4 cm<sup>-1</sup>. <sup>1</sup>H NMR (400 MHz, [D<sub>6</sub>]-DMSO, 25 °C, TMS): 8.33 (s. 2H. imidazolyl(N-C\*-N)-H), 7.96 (q, 4H, Ar(BiBzIm)-H), 7.37 (s. 2H. imidazolyl(Rh-N-C\*-C)-H), 7.35 (q, 4H, Ar(BiBzIm)-H), 7.31 (d, 4H, J = 8.0 Hz, side-phenyl-H), 7.22 (d, 4H, J = 12.0 Hz, side-phenyl-H), 7.02 (s, 4H, centra-phenyl-H), 6.69 (d, 2H, J = 12.0 Hz, olefin-H), 6.59 (d, 2H, J = 12.0 Hz, olefin-H), 5.77 (s, 2H, imidazolyl (Rh-N-C-C\*)-H) 1.87 (s, 30H, Cp\*-H) ppm. Elemental analysis calcd (%) for C<sub>68</sub>H<sub>70</sub>F<sub>6</sub>N<sub>8</sub>O<sub>7</sub>Rh<sub>2</sub>S<sub>2</sub>: C 54.62; H 4.72; N 7.49. Found(%): C 54.71; H 4.70; N 7.45.

Data of complex **4a**: IR (KBr disk, cm<sup>-1</sup>): v = 1595.8 (s, C=O), 3007.2, 2965.7 and 2926.3 (m, Me). <sup>1</sup>H NMR (400 MHz, [D<sub>6</sub>]-DMSO, 25 °C, TMS): 8.20 (s, 2H, imidazolyl(N-C\*-N)-H), 7.76 (s, 2H, imidazolyl(Rh-N-C\*-C)-H), 7.55 (s, 2H, imidazolyl (Rh-N-C-C\*)-H), 7.40 (d, 4H, side-phenyl-H), 7.12 (s, 4H, centra-phenyl-H), 6.88 (d, 2H, olefin-H), 6.85 (d, 2H, olefin-H), 1.97 (s, 6H, Me-H) 1.70 (s, 30H, Cp\*-H) ppm. Elemental analysis calcd (%) for  $C_{60}H_{64}F_6N_4O_{10}Ir_2S_2$ : C 46.08; H 4.13; N 3.58. Found(%): C 46.10; H 4.26; N 3.54.

Data of complex **4b**: IR (KBr disk, cm<sup>-1</sup>): v = 1596.5 (s, C=O), 3007.0, 2965.7 and 2926.4 (m, C-CH<sub>3</sub>). <sup>1</sup>H NMR (400 MHz, [D<sub>6</sub>]-DMSO, 25 °C, TMS): 8.18 (s, 2H, imidazolyl(N-C\*-N)-H), 7.88 (s, 2H, imidazolyl(Rh-N-C\*-C)-H), 7.68 (s, 2H, imidazolyl (Rh-N-C-C\*)-H), 7.43 (d, 4H, J = 8.0 Hz, side-phenyl-H), 7.37 (d, 4H, J = 8.0 Hz, side-phenyl-H), 7.06 (s, 4H, centra-phenyl-H), 6.79 (d, 2H, J = 12.0 Hz, olefin-H), 1.97 (s, 6H, Me-H) 1.74 (s, 30H, Cp\*-H) ppm. Elemental analysis calcd (%) for C<sub>60</sub>H<sub>64</sub>F<sub>6</sub>N<sub>4</sub>O<sub>10</sub>Rh<sub>2</sub>S<sub>2</sub>: C, 52.03; H, 4.66; N, 4.04 Found(%): C 51.97; H 4.71; N 3.99.



Figure 1. <sup>1</sup>H NMR (400 MHz, DMSO) spectrum of complex **2b**.



 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I

Figure 2. <sup>1</sup>H NMR (400 MHz, DMSO) spectrum of complex **3b**.



Figure 3. <sup>19</sup>F NMR spectra of **3b** and **4b**.





Figure 4. a) The angel between two plane (plane(C9, C10, C11, C14) and plane(C9A, C10A, C11A, C14A)) is 29.023°; b) open mode of the complex **4b** with space-filling structure; c) closed mode of the complex **3b** with space-filling structure.



Figure 5. Left: intermolecular interaction within two benzene rings of cation **3b**; right: intramolecular interaction between anions with the host structure of cation **4b.**(white ball: H, green ball: F, red ball: O, yellow ball: S, gray: C, blue: N, orange: Rh)



Figure 6. A standard rhombus structure for the cation **2b**.