Electronic Supplementary Information prepared for Dalton Transactions

Address correspondence to:

Seiji Ogo, Professor International Institute for Carbon–Neutral Energy Research (WPI-I2CNER), Kyushu University 744 Moto–oka, Nishi–ku, Fukuoka 819–0395, Japan Phone: 81-92-802-2818 Fax: 81-92-802-2823 E-mail: ogotcm@mail.cstm.kyushu-u.ac.jp

A model for the water-oxidation and recovery systems of the oxygen-evolving complex

A table of contents

Fig. S1	page S1
Fig. S2	page S2
Fig. S3	page S3
Fig. S4	page S4
Fig. S5	page S5
Fig. S6	page S6
Fig. S7	page S7
Fig. S8	page S8
Fig. S9	page S9
Fig. S10	page S10
Fig. S11	page S11
Fig. S12	page S12
Fig. S13	page S13
Fig. S14	page S14
Fig. S15	page S15
Fig. S16	page S16

Fig. S1 Positive-ion ESI mass spectral change for the repeated cycle of photoreduction of **2** and oxygenation of **1**. The spectra of **1** shown in (b), (d) and (f) were obtained from photo-irradiation of **2** shown in (a), (c) and (e), respectively. The spectra of **2** shown in (c), (e) and (g) were obtained from oxygenation of **1** shown in (b), (d) and (f), respectively. (h) The signal at m/z 361.0 corresponds to $[\mathbf{2}]^{2+}$. (i) Calculated isotopic distribution for $[\mathbf{2}]^{2+}$. (j) The signal at m/z 565.3 corresponds to $[\mathbf{1}]^+$. (k) Calculated isotopic distribution for $[\mathbf{1}]^+$.

Fig. S2 (a) Positive-ion ESI mass spectrum of **2** in CH₃CN, which is obtained from the photo-irradiation of **2** and successive oxygenation of **1**. (b) The signal at m/z 361.0 corresponds to $[2]^{2+}$. (c) Calculated isotopic distribution for $[2]^{2+}$. (d) Positive-ion ESI mass spectrum of $[Mn^{III,III}_2(TPA)_2(\mu-{}^{18}O)_2]^{2+}$ (¹⁸O-labelled **2**) in CH₃CN, which is obtained from the photo-irradiation of **2** and successive oxygenation of **1** using ${}^{18}O_2$. (b) The signal at m/z 363.0 corresponds to $[{}^{18}O$ -labelled **2**]²⁺.

Fig. S3 UV-vis spectra of 3,5-di-*t*-butyl-1,2-benzoquinone (DTBBQ) (400 μ M) and NEt₃ (4.0 mM) in CH₃CN (2.5 mL) (a) before and (b) after photo-irradiation (>550 nm).

Fig. S4 Positive-ion GC-mass spectra of $H_2^{16}O$ and $H_2^{18}O$ obtained from the reaction of **2** (1.4 mg, 1.0 µmol) with (a) ${}^{16}O_2$ (5.0 mL) and (b) ${}^{18}O_2$ (5.0 mL) in the presence of 3,5-di-*t*-butyl-1,2-benzoquinone (DTBBQ) (22 mg, 100 µmol) and NEt₃ (140 µL, 1.0 mmol) in CH₃CN (200 µL) under photo-irradiation (>550 nm).

Fig. S5 Diffuse reflectance UV-vis spectra of (a) 2.3@Clay and (b) clay.

Fig. S6 ESR spectrum of $2 \cdot 3$ (Clay (5.0 mg, content of the mixture of 2 and 3: 300 nmol) suspended in DMF (500 µL) at -150 °C (microwave frequency: 9.16 GHz, microwave power: 1.0 mW).

Fig. S7 XRD patterns of (a) 2·3@Clay and (b) clay.

Fig. S8 STEM images and EDS elemental mappings of (a) $2\cdot3@$ Clay and (b) clay material isolated from the mixture of $2\cdot3@$ Clay and Ce^{IV}.

Fig. S9 ORTEP drawing of $[Ce^{IV,IV}_2(NO_3)_{10}(\mu-O)]^{4-}$ with ellipsoids at 50% probability. The counter cation $[Mn^{IV,IV}_2(TPA)_2(\mu-O)_2]^{4+}$ (4) is omitted for clarity. Selected interatomic distance (*l*/Å) and angle ($\phi/^\circ$): Ce1–O2 = 2.0480(2), Ce1–O2–Ce1* = 170.70(11).

Fig. S10 UV-vis spectra of (a) the CH₃CN solution of 3 (100 μ M) and (b) the supernatant CH₃CN/water solution after adsorption of 3 on clay.

Fig. S11 UV-vis spectra of (a) the aqueous solution of **4** (1.0 mM) and (b) the supernatant aqueous solution after adsorption of **4** on clay.

Fig. S12 XRD patterns of (a) 3@Clay and (b) 4@Clay.

Fig. S13 Time course of the evolved O_2 from the aqueous suspension (2.0 mL) of **3@Clay** (600 µg, content of **3**: 39 nmol) with an excess amount of $(NH_4)_2[Ce^{IV}(NO_3)_6]$ (137 mg, 250 µmol).

Fig. S14 UV-vis spectra of the supernatant solution (3.0 mL) of the reaction of **3**@Clay (30 mg, content of **3**: 2.0 μ mol) with an excess amount of (NH₄)₂[Ce^{IV}(NO₃)₆] (274 mg, 0.50 mmol) after (a) 0.5 min and (b) 60 min.

Fig. S15 Positive-ion GC mass spectrum of ${}^{16,18}O_2$ and ${}^{18}O_2$ obtained from the $H_2{}^{18}O$ suspension (100 µL) of **3@Clay** (15 mg, content of **3**: 980 nmol) and (NH₄)₂[Ce^{IV}(NO₃)₆] (27 mg, 49 µmol).

Fig. S16 Positive-ion GC mass spectrum of ${}^{16,18}O_2$ and ${}^{18}O_2$ obtained from the $H_2{}^{18}O$ suspension (100 µL) of **4@Clay** (50 mg, content of **4**: 1.0 µmol) and (NH₄)₂[Ce^{IV}(NO₃)₆] (27 mg, 49 µmol).