Supplementary Electronic Information

Impact of high π -density on the coordination properties of π -excess aromatic neutral $\sigma^2 P$ ligands – P(π)-donor bonds to Ag⁺ and HgCl₂

Mohammed Ghalib,^a László Könczöl,^b László Nyulászi,^{*b} Peter G. Jones,^{*c} Gottfried J. Palm,^d and Joachim W. Heinicke^{*a}

- ^a Ernst-Moritz-Arndt-Universität Greifswald, Institut für Biochemie (Anorganische Chemie), Felix-Hausdorff-Str. 4, 17487 Greifswald (Germany), E-mail: <u>heinicke@uni-greifswald.de</u>
- ^b Department of Inorganic Chemistry and Analytical Chemistry, Budapest University of Technology and Economics (Hungary)
- ^c Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Postfach 3329, D-38023 Braunschweig (Germany)
- ^d Ernst-Moritz-Arndt-Universität Greifswald, Institut für Biochemie (Molekulare Strukturbiologie), Felix-Hausdorff-Str. 4, 17487 Greifswald (Germany)
- 1. Experimental details
- 2. NMR spectra of the new compounds
- 3. Background and detailed data of quantum chemical calculations
- 4. Details of crystal structure determination of **2** and **5**, CCDC numbers and data tables (for **5** with figure of the packing in the crystal).

1. Experimental details

General. All operations were carried out under nitrogen in carefully dried, freshly distilled solvents using standard Schlenk techniques and glassware heat-dried in vacuum. NMR spectra were measured on a multinuclear FT-NMR spectrometer ARX300 (Bruker) at 300.1 (¹H), 75.5 (¹³C), and 121.5 (³¹P) MHz. Shift references are tetramethylsilane for ¹H and ¹³C and H₃PO₄ (85%) for ³¹P, δ values are given in ppm. Coupling constants refer to J_{HH} unless indicated otherwise. Mass spectra were measured on a single focussing sector-field

spectrometer AMD40, high-resolution mass spectra on a double-focussing sector field mass spectrometer MAT 95 (Fa. Finnigan) with EI (70 eV) or ESI. Melting points (uncorrected) were determined with a Sanyo Gallenkamp melting point apparatus, elemental analyses with a Vario Micro Cube CHN analyzer from Elementar under standard conditions. 1-Neopentyl-1,3-benzazaphosphole (1) was synthesized by a modification of a known procedure,^[1] using a catalytic amount of Me₃SiCl (ca. 0.1 mL) in the cyclocondensation with dimethylformamide dimethylacetal. This shortens the reaction time from 7 to 1d, yield 76%.

μ-Bis[di(1-neopentyl-1H-1,3-benzazaphosphol)silver chloride] (2).

Toluene (20 mL) was added to a Schlenk flask, charged with 1 (100 mg, 0.49 mmol) and AgCl (70 mg, 0.49 mmol). The mixture was cooled to -60 °C and dry ammonia added by condensation to dissolve AgCl. After 40 min the mixture was slowly warmed to room temperature. The colour of the solution turned from pale brown to red-brown, and NH₃ vaporized. The mixture was filtered, the solvent removed in vacuum (finally <1 Torr) and the remaining brown oil (65 mg, 48%) crystallized by dissolving it in a small amount of THF and overlayering with hexanes. The white crystals decomposed rapidly on contact with air (turning brown) and slowly in CD₃OD (turning black), but they were stable for several days in the dark in the presence of mother liquor. ¹H-NMR (CD₃OD): $\delta = 0.92$ (s, 9 H, CMe₃), 4.10 (s, 2 H, NCH₂), 7.31 (tdd, ${}^{3}J$ = 7.8, 7.0, ${}^{4}J_{PH}$ = 2.1, ${}^{4}J$ = 0.9 Hz, 1 H, H-5), 7.38 (ddt, ${}^{3}J$ = 8.4, 7.1, ${}^{4}J \approx {}^{5}J_{PH} = 1.2$ Hz, 1 H, H-6), 7.74 (dd, ${}^{3}J = 8.7$, ${}^{4}J = 0.9$ Hz, 1 H, H-7), 7.79 (dddd, ${}^{3}J = 7.8$, ${}^{3}J_{PH} = 5.1$, ${}^{4}J = 1.2$, ${}^{5}J = 0.9$ Hz, 1 H, H-4), 8.45 (d, ${}^{2}J_{PH} = 38.4$ Hz, 1 H, H-2). ¹³C{¹H}-NMR (CD₃OD): δ = 28.46 (s, CMe₃), 35.26 (s, CMe₃), 61.55 (DEPT d, ³J = 2.4 Hz, NCH₂), 115.52 (s, C-7), 121.58 (d, ${}^{3}J$ = 11.9 Hz, C-5), 125.81 (DEPT d, ${}^{4}J$ = 2.2 Hz, C-6), 129.74 (d, ${}^{2}J = 21.2$ Hz, C-4), 142.32 (d, ${}^{1}J = 31.9$ Hz, C_a-3a), 144.98 (d, ${}^{2}J = 4.0$ Hz, C_a-7a), 166.32 (d, ${}^{1}J = 43.8$ Hz, C_a-2). ${}^{31}P{}^{1}H{}-NMR$ (CD₃OD): $\delta = 51.9$ ppm (s). For details and data of crystal structure analysis see below.

Reaction of 1 with $AgSbF_6$ in THF (1:1 molar ratio) to neopentyl-*1H*-1,3benzazaphosphole silver(I)-hexafluoroantimonate THF solvate (3).

A Schlenk tube was charged with 1 (90.3 mg, 0.44 mmol) and $AgSbF_6$ (151.2 mg, 0.44 mmol), and THF (10 mL) was added at room temperature. The colour turned rapidly to pale brown, and soon a dark brown to black precipitate was formed. The mixture was stirred for 24 h, the precipitate filtered off and the solvent removed in vacuum to give 173 mg (79%) of a white to pale brown solid with an elemental analysis corresponding to (1)(AgSbF_6)₂(THF)_{1.5}. Slow evaporation of its solution in CD₃OD led to white to pale brown crystals. NMR data and

elemental analysis fitted best with the composition Ag(1)SbF₆·(THF)_{1.3}. The crystals decomposed in the mother liquor within few days. ¹H-NMR (CD₃OD): $\delta = 1.00$ (s, 9 H, CMe₃), 4.38 (s, 2 H, NCH₂), 7.47 (br td, ${}^{3}J = 7.4$, ${}^{4}J_{PH} = 2.6$ Hz, 1 H, H-5), 7.64 (tt, ${}^{3}J = 8.7$, 7.5, ${}^{4}J = {}^{5}J_{PH} = 1.5$ Hz, 1 H, H-6), 8.00 (br t, ${}^{3}J \approx {}^{3}J_{PH} = 7.5$, 7.2 Hz, 1 H, H-4), 8.06 (d, ${}^{3}J = 8.7$ Hz, 1 H, H-7), 9.33 (d, ${}^{2}J_{PH} = 39.9$ Hz, 1 H, H-2); 1.86 (m, 5.2 H, CH₂, 1.3 THF), 3.72 (m, 4.4 H, OCH₂, 1.1 THF_A); 3.45 (m, 0.8 H, OCH₂, 0.2 THF_B). ¹³C{}^{1}H}-NMR (CD₃OD): $\delta = 28.42$ (s, CMe₃), 35.58 (s, CMe₃), 63.25 (s, NCH₂), 118.28 (br s, C-7), 125.80 (d, ${}^{3}J = 11.9$ Hz, C-5), 128.65 (d, ${}^{4}J = 2.7$ Hz, C-6), 129.67 (d, ${}^{2}J = 18.6$ Hz, C-4), 139.63 (d, ${}^{1}J = 5.3$ Hz, C_q-3a), 145.97 (br s, C_q-7a), 173.00 (d, ${}^{1}J = 22.6$ Hz, C-2); 26.49 (s, CH₂, THF), 68.95 (s, OCH₂, THF); 27.43 (s, CH₂, THF_{coord}), 71.67 (s, OCH₂, THF_{coord}). ³¹P{}¹H}-NMR (CD₃OD): $\delta = -5.9$ ppm (s). Elemental analysis of (1)(AgSbF₆)₂(THF)_{1.5}: calcd. for C₁₈H₂₈Ag₂F₁₂NO_{1.5}PSb₂ (1000.63): C 21.60, H 2.82, N 1.40; found: C 21.20, H 3.15, N 1.53. Elemental analysis of crystals from CD₃OD: calcd. for (1)AgSbF₆·1.3 THF (642.59): 32.15, H 4.14, N 2.18; found: C 31.94, H 4.08, N 2.35.

A crystal structure study (G. Palm) of a freshly prepared sample of **3** performed with a diffractometer optimized for the investigation of biomacromolecules, allowed the detection of the formation of a tetrameric benzazaphosphole silver complex (Figure S1) with four asymmetric units per unit cell (P2₁/c). The Ag- and P-atoms form an eight-membered ring (P-Ag-P 145 and 138°, Ag-P-Ag 110 and 127°), in which one P lies slightly above and the opposite P slightly below the plane. The aromatic planes of the benzazaphospholes are perpendicular to the Ag-P ring. The N-neopentyl groups of two neighbouring ligands face upwards, the other two downwards. Two Ag that coordinate a P above the Ag-P plane additionally coordinate one F each of a μ^2 -SbF₆⁻ below the plane and vice versa. Each Ag also coordinates one THF molecule. In total each Ag⁺ is coordinated by a trigonal pyramid of two benzazaphospholes (Ag-P 2.4 - 2.5 Å), THF (Ag-O 2.5 - 2.6 Å) and SbF₆⁻ (Ag-F 2.7 - 2.8 Å) with apical F. Unclear residual electron density, probably from THF and SbF₆⁻, prevented adequate refinement for the presentation of detailed structure data.

Figure S1. Schematic presentation of the structure of **3**.

Synthesis of (5-methyl-2-(2-diphenylphosphanyl)phenyl-1,3-benzazaphosphol-*P*,*P*')-mercury(II)chloride (5).

THF (10 mL) was added to a Schlenk flask, charged with 2-(2-diphenylphosphanylphenyl)-5methyl-1H-1,3-benzazaphosphole (4)^[2] (94.2 mg, 0.23 mmol) and a slight excess of HgCl₂ (74.9 mg, 0.276 mmol). After few minutes the colour turned to orange-yellow, and precipitation began. The mixture was stirred at room temperature for 24 h, whereafter an insoluble solid was separated by filtration and washed with a small amount of THF. Removal of the solvent gave 103 mg (66%) yellow solid. Slow concentration of a solution in THF- d_8 provided single crystals. ¹H-NMR ([D₈]THF): $\delta = 2.32$ (s, 3 H, 5-Me), 7.13 (br d, ³J = 8.7 Hz, 1 H, H-7), 7.31 (br t, ${}^{3}J$ = 8.7 Hz, 1 H, H-6), 7.40-7.63 (m, 14 H, aryl-H), 7.74 (br t, ${}^{3}J$ = 7.5 Hz, 1 H, aryl-H), 7.85 (br t, ${}^{3}J = 7.2$, ${}^{3}J_{PH} = 5.1$ Hz, 1 H, H-4), 12.33 (s br, 1 H, NH). ¹³C{¹H}-NMR ([D₈]THF): δ = 21.66 (s, 5-Me), 116.14 (s, C-7), 127.22 (d, ¹J = 50.4 Hz, C_α-2'), 128.58 (d, ${}^{2}J$ = 19.9 Hz, C-4), 128.67 (d, ${}^{1}J$ = 46.4 Hz, 2 C₀-*i*), 129.24 (DEPT d, ${}^{4}J$ = 2.2 Hz, C-6), 130.28 (d, J = 8.0 Hz, C-4'), 130.66 (d, ${}^{3}J = 11.9$ Hz, 4 C-m), 131.93 (τ , $|{}^{2}J + {}^{4}J|$ = 10.6 Hz, C6'), 132.36 (d, ${}^{3}J$ = 11.9 Hz, C_a-5), 133.27 (d, J = 2.2 Hz, 2 C-p), 133.44 (s, C-5'), 135.14 (d, ${}^{2}J$ = 14.6 Hz, 4 C-*o*), 137.14 (DEPT d, J = 3.3 Hz, C3'), 140.55 (τ , $|{}^{1}J+{}^{3}J|$ = 29.2 Hz, C_q -1'), 142.40 (d, J = 38.5 Hz, C_q -3a), 144.11 (d, 2J = 6.6 Hz, C_q -7a), 173.51 (br d, ${}^{1}J = 53 \text{ Hz}, \text{ C}_{g}-2$). ${}^{31}P{}^{1}H{}$ -NMR ([D₈]THF, 25 °C): $\delta = 19.0 \text{ (vbr)}, 58.0 \text{ ppm (d, } {}^{2}J_{PP} = 105.4 \text{ mm}$ Hz). Analysis calcd. for C₂₆H₂₁Cl₂HgNP₂ (680.90): C 45.86, H 3.11, N 2.06; found: C 45.27, H 3.03, N 2.07. MS (ESI in MeOH): calcd. for [M(²⁰²Hg)+MeOH]⁺ 713.05; found 713.08

(and correct relative intensities of the isotopic peaks). For details and data of crystal structure analysis see below.

Detection of 1-neopentyl-1H-1,3-benzazaphosphole mercury(II)chloride.

Dichloromethane (DCM; 10 mL) was added to a mixture of **1** (88 mg, 0.43 mmol) and excess HgCl₂ (467 mg, 1.72 mmol, 4.0 eq.) at room temperature to give a turbid yellow solution. After few minutes a solid precipitated. After stirring for 1d the solid was filtered off and washed with DCM. The solvent was removed from the filtrate to give 160 mg (50 %) yellow solid. Attempts to crystallize the substance by solution in a small amount of THF and overlayering with DCM furnished a solid that decomposed within few days. ¹H-NMR (CD₂Cl₂): $\delta = 1.09$ (s, 9 H, CMe₃), 4.61 (br s, 2 H, NCH₂), 7.57 (td, ³*J* = 7.5, 7.2, ⁴*J*_{PH} = 2.5 Hz, 1 H, H-5), 7.69 (br td, ³*J* = 8.4, 7.4, ⁴*J* = 1.2 Hz, 1 H, H-6), 7.94 (d, ³*J* = 8.3 Hz, H-7), 8.25 (ddd, ³*J* = 7.5, ³*J*_{PH} = 4.5, ⁴*J* = 1.1 Hz, 1 H, H-4), 9.84 (d, ²*J*_{PH} = 32.1 Hz, 1 H, H-2). ¹³C {¹H}-NMR (CD₂Cl₂): $\delta = 28.32$ (s, *CMe*₃), 34.65 (s, *CMe*₃), 64.45 (s, NCH₂), 117.96 (s, C-7), 127.53 (d, ³*J* = 9.3 Hz, C-5), 129.51 (s, C-6), 131.36 (d, ²*J* = 19.8 Hz, C-4), 137.60 (d, ¹*J* = 22.6 Hz, C_q-3a), 147.11 (d, ²*J* = 2.7 Hz, C_q-7a), 185.72 (d, ¹*J* = 41.1 Hz, CH). ³¹P {¹H}-NMR (CD₂Cl₂): $\delta = -14.0$ ppm (s). Analysis calcd. for C₁₂H₁₆Cl₂HgNP + HgCl₂ (748.23): C 19.26, H 2.16, N 1.87; found: C 16.58 (combustion incomplete), H 1.98, N 1.71.

In contrast to the above-mentioned silver complexes, the HgCl₂ complex adds rapidly methanol at the P=C bond when treated with or synthesized in this solvent.

Detection of 3-methoxy-1-neopentyl-2,3-dihydro-1,3-benzazaphosphole coordinated at HgCl₂.

Methanol (10 mL) was added at room temperature to a mixture of **1** (53 mg, 0.26 mmol) and excess HgCl₂ (175 mg, 0.645 mmol, 2.5 eq.). After stirring for 1d the solid was filtered off and methanol removed from the filtrate to give 102 mg of a colourless viscous oil. The NMR data show a mixture of diastereoisomers (ca. 85:10 mol%) and some contamination by **1** (5 mol% based on *t*Bu proton integration). ¹H-NMR (C₆D₆): $\delta = 0.68$ (s, 9 H, CMe₃), 2.22 (d, ²*J* = 14.7 Hz, NCH_a), 2.68 (d, ²*J* = 14.7, ⁴*J*_{PH} = 2.2 Hz, NCH_b), 3.03 (d, ²*J* = 14, ²*J*_{PH} = 11.6 Hz, PCH_aN), 3.14 (d, ²*J* = ²*J*_{PH} = 14.0 Hz, PCH_bN), 3.41 (d, *J* = 11.3 Hz, 3 H, POCH₃), 6.43 (dd, ³*J* = 8.5, ⁴*J*_{PH} = 4.7 Hz, 1 H, H-7), 6.55 (br td, ³*J* = 7.2, ⁴*J*_{PH} = 3.0 Hz, 1 H, H-5), 7.09 (tt, ³*J* = 8.7, 7.5, ⁴*J* = ⁵*J*_{PH} = 1.2 Hz, 1 H, H-6), 7.51 (ddd, ³*J*_{PH} = 11.3, ³*J* = 7.6, ⁴*J* = 1.1 Hz, 1 H, H-4). ¹³C{¹H}-NMR (C₆D₆): $\delta = 28.75$ (s, *CMe*₃), 34.87 (s, *CMe*₃), 51.67 (br d, ²*J* = 6 Hz (DEPT 6.6 Hz), POMe), 51.80 (d, ¹*J* = 100.8 Hz, PCH₂N), 63.35 (d, ³*J* = 8.0 Hz, NCH₂), 110.99 (d, ³*J* = 11.9 Hz, C-7), 114.72 (d, ¹*J* = 127.4 Hz, C_q-3a), 118.05 (d, ³*J* = 11.9 Hz, C-5), 129.29 (d,

 ${}^{2}J = 6.6$ Hz, C-4), 134.80 (s, C-6), 157.34 (d, ${}^{2}J = 23.9$ Hz, C_q-7a). ${}^{31}P\{{}^{1}H\}$ -NMR (C₆D₆): $\delta = 50.52$ (s), 49.9 (sh) ppm.

Acknowledgements

Funding by DFG and Deutscher Akademischer Austausch Dienst (B.N.) is gratefully acknowledged. We thank G. Thede, M. Steinich and Dr. M. K. Kindermann for NMR and LRMS, Dr. H. Frauendorf and G. Sommer-Udvarnoki (Georg-August-Universität Göttingen, Institut für Organische und Biomolekulare Chemie) for HRMS measurements. Support from OTKA K 105417 and the Jedlik fellowship (LK) is also gratefully acknowledged.

References

- B. R. Aluri, M. K. Kindermann, P. G. Jones, I. Dix, J. W. Heinicke, *Inorg. Chem.*, 2008, 47, 6900-6912.
- [2] B. Niaz, M. Ghalib, P. G. Jones, J. W. Heinicke, *Dalton Trans.* 2013, 42, 9523-9532.

2. NMR spectra of the new compounds

¹H NMR Spectrum of compound **2** in CD_3OD (Np = CH_2CMe_3).

Acquisition Time (sec)	5.2953	Comment	Ghalib:M128a 1H-9	Spektrum Loesungsmittel: C	D3OD Referenz:	LM=3.31 ppm Messzeit:	10 min. EMAU, Avance II - 300
Date	07 Dec 2010 14:00	:48		Date Stamp	07 Dec 2010 14:0	0:48	
File Name	H:\			Frequency (MHz)	300.13	Nucleus	1H
Number of Transients	96	Origin	spect	Original Points Count	32768	Owner	nmr
Points Count	16384	Pulse Sequence	zg30	Receiver Gain	101.00	SW(cyclical) (Hz)	6188.12
Solvent	METHANOL-d4	Spectrum Offset (Hz)	1849.4720	Spectrum Type	STANDARD	Sweep Width (Hz)	6187.74
Taman anatura (damaaa C	1 24 200						

¹³C{¹H} NMR Spectrum of compound 2 in CD₃OD (Np = CH₂CMe₃).

0.7537	Comment	M. Ghalib: M128a 13	C{1H}-NMR-Spektrum LM:	CD3OD Referenz: LM	= 49.00 ppm Messzeit:13	Stunden und 42 min. EMAU, AVANCE II - 300
08 Dec 2010 09:06:24	4		Date Stamp	08 Dec 2010 09:06:2	4	
H:\			Frequency (MHz)	75.47	Nucleus	13C
15977	Origin	spect	Original Points Count	16384	Owner	nmr
16384	Pulse Sequence	zgpg30	Receiver Gain	32800.00	SW(cyclical) (Hz)	21739.13
METHANOL-d4	Spectrum Offset (Hz)	8464.0068	Spectrum Type	STANDARD	Sweep Width (Hz)	21737.80
	0.7537 08 Dec 2010 09:06:24 H:\ 15977 16384 METHANOL-d4	0.7537 Comment 08 Dec 2010 09:06:24	0.7537 Comment M. Ghalib: M128a 134 08 Dec 2010 09:06:24	0.7537 Comment M. Ghalib: M128a 13C{1H}-NMR-Spektrum LM: 08 Dec 2010 09:06:24 Date Stamp H:\ Frequency (MHz) 15977 Origin spect Original Points Count 16384 Pulse Sequence zgpg30 Receiver Gain METHANOL-d4 Spectrum Offset (Hz) 8464.0068 Spectrum Type	0.7537 Comment M. Ghalib: M128a 13C{1H}-NMR-Spektrum LM: CD3OD Referenz: LM 08 Dec 2010 09:06:24 Date Stamp 08 Dec 2010 09:06:2 H:\ Frequency (MHz) 75.47 15977 Origin spect Original Points Count 16384 16384 Pulse Sequence zgpg30 Receiver Gain 32800.00 METHANOL-d4 Spectrum Offset (Hz) 8464.0068 Spectrum Type STANDARD	0.7537 Comment M. Ghalib: M128a 13C{1H}-NMR-Spektrum LM: CD3OD Referenz: LM = 49.00 ppm Messzeit:13 08 Dec 2010 09:06:24 Date Stamp 08 Dec 2010 09:06:24 H:\ Frequency (MHz) 75.47 Nucleus 15977 Origin spect Original Points Count 16384 Owner 16384 Pulse Sequence zgp30 Receiver Gain 32800.00 SW(cyclical) (Hz) METHANOL-d4 Spectrum Offset (Hz) 8464.0068 Spectrum Type STANDARD Sweep Width (Hz)

³¹P{¹H} NMR Spectrum of compound 2 in CD_3OD (Np = CH_2CMe_3).

Acquisition Time (sec)	1.3107						
Comment	Ghalib:M128a 31P{1F	I}-NMR-Spektrum Loesung	smittel: CD3OD Ref.: ex	tern, H3PO4 (Kapillare in M	lethanol-d4) = 0.0 ppm l	Messzeit 15min. EMAU, A	vance II - 300
Date	07 Dec 2010 14:17:52			Date Stamp	07 Dec 2010 14:17:5	2	
File Name	H:\ _			Frequency (MHz)	121.49	Nucleus	31P
Number of Transients	256	Origin	spect	Original Points Count	65536	Owner	nmr
Points Count	65536	Pulse Sequence	zgpg30	Receiver Gain	23100.00	SW(cyclical) (Hz)	50000.00
Solvent	METHANOL-d4	Spectrum Offset (Hz)	632.1547	Spectrum Type	STANDARD	Sweep Width (Hz)	49999.24
T	04.000						

51.920

Temperature (degree C) 24.600

200 180 160 140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 Chemical Shift (ppm)

¹H NMR Spectrum of compound 3 CD₃OD.

Acquisition Time (sec)	5.2953	Comment	M. Ghalib: M114F1 1H-	Spektrum Loesungsmittel: (CD3OD Referenz:	LM= 3.31 ppm Messzeit: 10 m	nin. EMAU, Avance II - 300
Date	08 Oct 2010 13:14:08	Date Stamp	08 Oct 2010 13:14:08				
File Name	C:\					Frequency (MHz)	300.13
Nucleus	1H	Number of Transients	32	Origin	spect	Original Points Count	32768
Owner	nmr	Points Count	16384	Pulse Sequence	zg30	Receiver Gain	64.00
SW(cyclical) (Hz)	6188.12	Solvent	METHANOL-d4	Spectrum Offset (Hz)	1849.0933	Spectrum Type	STANDARD
Sweep Width (Hz)	6187.74	Temperature (degree C) 24,900				

Chemical Shift (ppm)

¹³ C{ ¹ H} NMR Spectrum of compound 3 in CD	3OD.
---	------

A any initian Time (coc)	0 7537	Comment	M. Ghalib: M114F1 13C{	1H}-NMR-Spektrum LM: M	ethanol Referenz: LM = 4	9.0 ppm Messzeit: 16,5 Stund	len EMAU, AVANCE II - 300
Date	09 Oct 2010 06:52:16	Date Stamp	09 Oct 2010 06:52:16				
Eilo Name	C:)					Frequency (MHz)	75.47
Nucleus	130	Number of Transients	20480	Origin	spect	Original Points Count	16384
Owner	nmr	Points Count	16384	Pulse Sequence	zgpg30	Receiver Gain	32800.00
SW(cyclical) (Hz)	21739 13	Solvent	METHANOL-d4	Spectrum Offset (Hz)	8474.6221	Spectrum Type	STANDARD
Sween Width (Hz)	21737 80	Temperature (degree C)	24,900				
		$\begin{pmatrix} 5 & 4 & 3a \\ 6 & 7 & 7a \end{pmatrix}$	$Ag^{+}(THF)$ P SbF_{6}^{-} CMe_{3}			1349.43 48.85149.150 28.421	
	7	0 0 13	97 551 86.672 88.672 18.877 118.281		672	48.28848.57048.57048.570	

³¹P{¹H} NMR Spectrum of compound 3 in CD₃OD.

Acquisition Time (sec)	1.3107						
Comment	Ghalib:M114F1 31P{1H}-	NMR-Spektrum Loesungsmi	ittel: CD3OD Messzeit: 10 r	nin. Ref.: extern, H3PO4 (Ka	apillare in Methanol-d4) = 0.0	ppm EMAU, Avance II - 300	о
Date	08 Oct 2010 13:29:04	Date Stamp	08 Oct 2010 13:29:04				
File Name	C:\					Frequency (MHz)	121.49
Nucleus	31P	Number of Transients	256	Origin	spect	Original Points Count	65536
Owner	nmr	Points Count	65536	Pulse Sequence	zgpg30	Receiver Gain	23100.00
SW(cyclical) (Hz)	50000.00	Solvent	METHANOL-d4	Spectrum Offset (Hz)	632.1547	Spectrum Type	STANDARD
Sweep Width (Hz)	49999 24	Temperature (degree C	25,100				

-5.871

200 180 160 140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 Chemical Shift (ppm)

¹H NMR Spectrum of compound 5 in [D₈]THF.

Acquisition Time (sec)	5.2953	Comment	M. Ghalib: MBN77H	lgx 1H-Spektrum Loesungs	mittel:THF-d8 Referer	iz: LM = 1,72 ppm	n Messzeit: 10 min. EMAU, Avance II - 300	
Date	11 Nov 2011 12:05	5:36		Date Stamp	11 Nov 2011 12:05:3	36		
File Name	H:\GH_MBN77HG	X\1\PDATA\1\1R		Frequency (MHz)	300.13	Nucleus	1H	
Number of Transients	32	Origin	spect	Original Points Count	32768	Owner	nmr	
Points Count	16384	Pulse Sequence	zg30	Receiver Gain	90.50	SW(cyclical) (Hz)	6188.12	
Solvent	THF	Spectrum Offset (Hz)	1831.9537	Spectrum Type	STANDARD	Sweep Width (Hz)	6187.74	
1 -								

¹³C{¹H} NMR Spectrum of compound 5 in [D₈]THF.

¹H NMR Spectrum of the HgCl₂ complex with ligand 1 in CD_2Cl_2 (+trace [D₈]THF), by elemental analysis roughly (1)·2HgCl₂.

Acquisition Time (sec)	5.2953	Comment	Ghalib: M129KN1 1H-Sp	ektrum Loesungsmittel:	CD2Cl2 Referenz:	LM= 5,32	ppm Messzeit: 10 min. El	MAU, Avance II - 300
Date	27 Feb 2012 14:22:08	Date Stamp	27 Feb 2012 14:22:08					
File Name	C:\						Frequency (MHz)	300.13
Nucleus	1H	Number of Transients	32	Origin	spect		Original Points Count	32768
Owner	nmr	Points Count	16384	Pulse Sequence	zg30		Receiver Gain	161.00
SW(cyclical) (Hz)	6188.12	Solvent	DICHLOROMETHANE-d	12			Spectrum Offset (Hz)	1843.8838
Spectrum Type	STANDARD	Sweep Width (Hz)	6187.74	Temperature (degre	e C) 24,700			

¹³C{¹H} NMR Spectrum of the HgCl₂ complex with ligand 1 in CD_2Cl_2 (+trace [D₈]THF).

Acquisition Time (sec)	0.7537	Comment	M.Ghalib: M129KN1 13C{1	H}-NMR-Spektrum LM: CD	2Cl2 Referenz: LM=53,8 pp	m Messzeit: 12 Stunden EN	IAU, AVANCE II - 300
Date	28 Feb 2012 09:12:48	Date Stamp	28 Feb 2012 09:12:48	L		1	
File Name	C:\					Frequency (MHz)	75.47
Nucleus	13C	Number of Transients	16368	Origin	spect	Original Points Count	16384
Owner	nmr	Points Count	16384	Pulse Sequence	zgpg30	Receiver Gain	32800.00
SW(cyclical) (Hz)	21739.13	Solvent	DICHLOROMETHANE-d2			Spectrum Offset (Hz)	8395.6455
Spectrum Type	STANDARD	Sweep Width (Hz)	21737.80	Temperature (degree C)	24.600		
					-54.152	-53.431 	
	185.957 185.452	——————————————————————————————————————					
208 200 1		160 152 144	136 128 120 <u>1</u> 12	104 96 88	80 72 64 56	48 40 32	24 16 8 0
			Cher	nicai Snift (ppm)			

³¹P{¹H} NMR Spectrum of the HgCl₂ complex with ligand 1 in CD_2Cl_2 (+trace [D₈]THF).

Acquisition Time (sec)	0.3277				
Comment	Ghalib: M2ME4MEE 31P{1H	-Spektrum Loesungsmittel	: CD2Cl2 Ref.: extern, H3PO4	= 0.0 ppm (+/- 0.3) Messze	it 10 min. EMAU Greifswald - Avance II - 300
Date	27 Feb 2012 14:32:48	Date Stamp	27 Feb 2012 14:32:48		
File Name	C:'			• • • • • • • • • • • • • • • • • • •	
Frequency (MHz)	121.49	Nucleus	31P	Number of Transients	256
Origin	spect	Original Points Count	16384	Owner	nmr
Points Count	32768	Pulse Sequence	zgpg30	Receiver Gain	23100.00
SW(cyclical) (Hz)	50000.00	Solvent	DICHLOROMETHANE-d2	Spectrum Offset (Hz)	499.9960
Spectrum Type	STANDARD	Sweep Width (Hz)	49998.47	Temperature (degree C) 24.900

200 180 160 140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 Chemical Shift (ppm)

3. Background and detailed data of quantum chemical calculations

- 3.1. Program: Gaussian 09, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian, Inc., Wallingford CT, 2010.
- **3.2. Geometry optimization** of **5** and the L(PMe₃)HgCl₂ systems were followed by calculation of the second derivatives to ensure that real minima were obtained. In the second order perturbation treatment in the NBO analysis the interaction with Ag⁺ and Hg²⁺ was considered. In Figure 3 the Kohn-Sham orbital was plotted by the VMD program (VMD Visual Molecular Dynamics. W. Humphrey, A. Dalke, K. Schulten. *Journal of Molecular Graphics*, **1996**, *14*, 33-38,), while for the structures the MOLDEN program has been used (G.Schaftenaar, J. H. Noordik, *J. Comput.-Aided Mol. Des.* **2000**, *14*, 123–134.).
- **3.3. Figures:** Figure S3.3: Optimized structure of **5** at the ωB97X-D/6-31G* level (on the transition metal Def2-TZVPP basis set was used).

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is The Royal Society of Chemistry 2013

Figure S3.4 The ω B97D/6-31G* optimized structures of L(PMe₃)HgCl₂ complexes. (on the transition metal Def2-TZVPP basis set was used)

3.4. Energies and optimized geometries of Lⁿ(PMe₃)HgCl₂ at the ωB97X-D/6-31G* level (on the transition metal Def2-TZVPP basis set was used)

 $L^{1}(PMe_{3})HgCl_{2} (\omega B97Xd/6-31G^{*}, def2-TZVPP on the Hg):$

ENERGY = -1916.2273306

С	3.284268	0.431008	1.050195
Р	3.355704	1.919836	-0.006073
С	1.966930	1.721592	-1.172769
Hg	5.526272	1.928711	-1.259142

Cl	4.957927	-0.210015	-2.413068
С	2.899203	3.324112	1.071989
Р	4.059525	4.347563	-3.304181
С	4.879599	3.107392	-4.066392
Н	5.939413	3.130938	-4.308582
Cl	7.588177	3.091249	-1.272937
Н	1.033846	1.525392	-0.634900
Η	2.197996	0.882640	-1.836040
Η	1.858248	2.628107	-1.774757
Η	3.666055	3.465747	1.838342
Н	2.837394	4.236045	0.471498
Η	1.933138	3.145484	1.555257
Н	4.033860	0.496548	1.843625
Н	2.291389	0.315561	1.496421
Н	3.511255	-0.438905	0.426358
Н	4.353405	2.200777	-4.357669
Н	5.156668	5.232714	-3.123144

 $L^{2}(PMe_{3})HgCl_{2} (\omega B97Xd/6-31G^{*}, def^{2}-TZVPP \text{ on the }Hg): ENERGY = -2069.8319781$

С	-0.059892	-0.126329	2.544881
С	-0.620646	-1.228555	3.189917
С	-1.934259	-1.253557	3.658005
С	-2.811024	-0.183215	3.528243
Р	-2.395204	1.313228	2.776792
С	-0.752566	1.055371	2.308095
Hg	-4.656551	3.137488	2.294412
Cl	-4.302412	3.778304	0.029657
Cl	-6.166766	1.447803	3.357811
Р	-4.508810	4.454530	4.460900
С	-4.004331	3.341989	5.820063
С	-3.423600	5.921384	4.609030
Н	-3.494087	6.365021	5.607612
Н	-3.711727	6.666392	3.862276
Н	-2.387458	5.628218	4.418074
С	-6.174413	5.031380	4.944671
Η	-6.171400	5.455422	5.953942

Η	-6.525058	5.785980	4.235155
Н	-6.855488	4.175887	4.905319
Η	-4.080620	3.841792	6.791022
Η	-4.660397	2.466487	5.798544
Η	-2.975490	3.006089	5.661336
Η	-3.831500	-0.274578	3.893938
Η	-2.290430	-2.160437	4.141061
Η	-0.006017	-2.113446	3.327899
Η	0.970906	-0.199872	2.205947
Η	-0.243700	1.863296	1.788512

$L^{3}(PMe_{3})HgCl_{2} (\omega B97Xd/6-31G^{*}, def^{2}-TZVPP \text{ on the }Hg): ENERGY = -1653.0148325$

С	-3.134582	-0.786382	1.619965
Р	-2.134787	0.385145	0.636266
С	-3.045885	0.596611	-0.937961
С	-0.636485	-0.568055	0.195731
Hg	-1.486949	2.393148	2.074810
Cl	-1.176301	4.650684	1.402733
С	-4.673856	2.804997	2.276321
С	-4.071066	3.002992	3.453903
Cl	-0.824172	1.019209	3.998692
С	-4.838360	3.839450	1.203297
Н	-3.255734	-1.741346	1.098771
Η	-2.629806	-0.943527	2.577958
Η	-4.119417	-0.354841	1.817806
Н	-3.220022	-0.367937	-1.426121
Η	-4.008538	1.077400	-0.741233
Η	-2.471595	1.242186	-1.608202
Η	-0.896292	-1.504813	-0.307762
Η	0.004348	0.029518	-0.458649
Н	-0.084858	-0.788289	1.114623
Η	-3.996385	2.217252	4.200056
Η	-3.650491	3.972091	3.715075
Η	-4.345884	4.776618	1.474001
Η	-4.401039	3.498709	0.256464
Н	-5.901458	4.034762	1.017533

1.825497 Н -5.110688 2.073135

 $L^{4}(PMe_{3})HgCl_{2} (\omega B97Xd/6-31G^{*}, def2-TZVPP on the Hg): ENERGY = -1971.5918143$

С	3.213918	0.280688	0.721134
Р	3.916607	1.817719	0.030246
Hg	2.233711	2.965347	-1.402763
Р	2.857598	5.646128	-1.843428
Cl	1.373472	2.569946	-3.665153
Cl	0.508371	3.073021	0.480222
С	5.551922	1.357675	-0.647848
С	4.259572	2.869702	1.481846
Н	4.904970	2.355892	2.201319
Н	3.302226	3.118417	1.949918
Н	4.737206	3.798590	1.157748
Н	5.417438	0.665985	-1.484068
Н	6.056311	2.253248	-1.021174
Н	6.177009	0.884205	0.116242
Н	3.057024	-0.445207	-0.081456
Н	3.875460	-0.149625	1.479817
Н	2.243260	0.521728	1.165164
С	1.119702	5.691700	-1.701001
Н	0.719626	5.841202	-0.699286
N	0.194286	5.552242	-2.642005
Н	-0.766041	5.395948	-2.366831
Н	0.460541	5.154852	-3.537333
Н	2.884577	5.432762	-3.248939

 $L^{5}(PMe_{3})HgCl_{2} (\omega B97Xd/6-31G^{*}, def^{2}-TZVPP \text{ on the }Hg): ENERGY = -2279.991627$

С 5.778836 0.845632 -0.518428 С 5.618255 -0.304120 0.282311 С 4.460177 -0.447048 1.030188 С 3.459577 0.533550 0.985698 С 3.646277 1.659781 0.165180 С 4.811125 1.828859 -0.591069 С 6.689236 -1.366007 0.317998 Р 1.844260 0.570324 1.777004

Hg	0.913441	-0.873968	-0.667539
Р	-1.279785	-1.587129	0.448975
С	-2.311340	-2.709061	-0.564992
Ν	2.548998	2.511394	0.178319
С	2.461762	3.671092	-0.693481
С	1.543836	2.066627	0.948048
Cl	2.188162	-2.947978	-0.371553
Cl	0.958550	0.860437	-2.359571
С	-0.877691	-2.552936	1.946524
С	-2.426801	-0.278387	1.019109
Η	4.946361	2.691479	-1.235342
Η	6.683843	0.951548	-1.110620
Η	7.312547	-1.332576	-0.580852
Η	6.246464	-2.364550	0.384051
Η	7.349083	-1.234970	1.184432
Η	4.306085	-1.345173	1.621447
Η	-1.776559	-2.958822	2.421720
Η	-0.202337	-3.364867	1.660168
Η	-0.345516	-1.908427	2.652185
Η	-3.184392	-3.063243	-0.007019
Η	-2.643692	-2.187388	-1.466829
Η	-1.704059	-3.566724	-0.868515
Η	-3.299433	-0.704626	1.524724
Η	-1.897030	0.381306	1.712534
Η	-2.757495	0.315802	0.162657
Η	0.634930	2.656140	0.974659
Η	1.528492	4.196894	-0.491859
Η	3.303052	4.343843	-0.504536
Η	2.464766	3.342094	-1.735913

 $L^{6}(PMe_{3})HgCl_{2} (\omega B97Xd/6-31G^{*}, def2-TZVPP on the Hg): ENERGY = -2048.9985219$

С 3.814508 0.618354 0.651013 Р 2.930408 2.092444 0.042184 С 1.246926 1.509537 -0.359935 С 2.759134 3.190086 1.495190

Hg	4.271739	2.906926	-1.896879
Cl	6.585085	2.929596	-0.850861
Cl	3.802165	0.600722	-3.136357
Р	4.523387	4.646475	-3.770885
С	4.168610	3.295179	-4.854065
N	5.198533	2.652373	-5.349834
С	6.495867	2.983986	-4.739942
С	6.354325	4.390545	-4.152196
Н	0.614718	2.355941	-0.642450
Н	1.326364	0.829997	-1.214050
Н	0.795330	0.986126	0.488996
Н	3.755453	3.523317	1.799863
Н	2.280215	2.667868	2.329841
Н	2.164601	4.068913	1.230517
Н	4.832361	0.907753	0.928112
Н	3.300097	0.169806	1.507019
Н	3.877417	-0.099928	-0.172063
Н	5.061284	1.732004	-5.751846
Н	6.953859	4.486575	-3.244022
Н	7.284715	2.916339	-5.492372
Н	3.176899	2.929381	-5.101018
Н	6.661774	5.157564	-4.870058
Н	6.682957	2.245177	-3.949237

4. Details of crystal structure determination of 2 and 5 and data tables

Intensity data were registered on an Oxford Diffraction Xcalibur diffractometer at 100 K using monochromated Mo $K\alpha$ radiation. Absorption corrections were based on multi-scans. Structures were refined anisotropically on F^2 using the program SHELXL-97 (G. M. Sheldrick, University of Göttingen, Germany). NH hydrogens were refined freely, methyls as rigid groups allowed to rotate but not tip, other H using a riding model starting from calculated positions.

Crystallographic data for **2** and **5** have been deposited with the Cambridge Crystallographic Data Centre, CCDC 926714 and 926715. Copies of the data can be obtained, free of charge, on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK, (fax: +44-(0)1223-336033 or e-mail: <u>deposit@ccdc.cam.ac.Uk</u>).

Table 1. Crystal data and structure refinement for compound **2**.

Identification code Empirical formula Formula weight Temperature Wavelength Crystal system Space group Unit cell dimensions	agriw $C_{48}H_{64}Ag_2Cl_2N_4P_4$ 1107.55 100(2) K 0.71073 Å Triclinic P(-1) a = 8.8284(2) Å b = 0.0250(2)	$\alpha = 107.197(2)^{\circ}$
	b = 9.9359(2) A a = 15.5614(2) Å	$\beta = 105./44(2)^{\circ}$ $\alpha = 00.400(2)^{\circ}$
Volume	$1249 18(4) Å^{3}$	$\gamma = 90.499(2)$
Z	1	
Density (calculated)	1.472 Mg/m ³	
Absorption coefficient	1.056 mm ⁻¹	
F(000)	568	
Crystal size	0.45 x 0.25 x 0.08 mm ³	
Theta range for data collection	2.41 to 30.03°	
Index ranges	-12<=h<=12, -13<=k<=12	3, -21<=l<=21
Reflections collected	81562	
Independent reflections	7153 [$R(int) = 0.0261$]	
Completeness to theta = 30.03°	97.9 %	
Absorption correction	Semi-empirical from equi	valents
Max. and min. transmission	1.00000 and 0.85071	_
Refinement method	Full-matrix least-squares	on F^2
Data / restraints / parameters	7153/0/277	
Goodness-of-fit on F^2	1.069	20
Final K indices $[1>2sigma(1)]$	KI = 0.01/1, WK2 = 0.042	28
K indices (all data)	$R_1 = 0.0194, WR_2 = 0.044$	42
Largest diff. peak and hole	0.435 and -0.260 e.A ⁻³	

Table 2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³) for compound **2**. U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

	Х	у	Z	U(eq)
Ag	1738.6(1)	796.0(1)	5016.1(1)	18.1(1)
Cl	-1233.6(3)	1167.9(3)	4299.4(2)	18.2(1)
N(1)	6676.0(10)	3439.9(9)	6671.4(6)	14.4(2)
C(2)	5411.7(13)	2986.3(11)	5899.3(7)	16.5(2)
P(3)	3642.1(3)	2774.6(3)	6120.6(2)	18.1(1)
C(3A)	4651.5(13)	3233.6(11)	7332.8(8)	16.6(2)
C(4)	4066.4(15)	3304.1(12)	8099.5(9)	22.9(2)
C(5)	5090.6(17)	3701.2(13)	8994.4(9)	27.1(3)
C(6)	6703.8(17)	4054.4(13)	9147.9(8)	25.5(2)
C(7)	7317.9(14)	4003.9(12)	8412.2(8)	20.2(2)
C(7A)	6281.4(13)	3583.4(11)	7499.3(7)	15.2(2)
C(8)	8282.8(12)	3666.9(11)	6604.0(8)	15.9(2)
C(9)	8727.9(12)	5139.1(11)	6556.6(8)	17.0(2)
C(10)	10365.3(14)	5089.5(14)	6396.7(9)	25.2(2)
C(11)	8780.5(14)	6295.0(12)	7471.7(9)	21.6(2)
C(12)	7557.8(14)	5458.0(13)	5728.9(9)	23.0(2)
N(1')	4016.3(10)	38.3(9)	2329.2(6)	14.2(2)
C(2')	4244.2(12)	336.0(11)	3269.8(7)	15.2(2)
P(3')	2588.2(3)	14.5(3)	3572.1(2)	16.8(1)
C(3A')	1492.0(12)	-552.7(11)	2374.5(8)	16.3(2)
C(4')	-103.9(13)	-1096.4(13)	1948.8(9)	22.5(2)
C(5')	-676.2(14)	-1566.7(14)	986.6(10)	27.4(3)
C(6')	309.4(15)	-1491.2(13)	426.1(9)	26.4(3)
C(7')	1878.1(14)	-949.8(12)	822.6(8)	21.0(2)
C(7A')	2473.6(12)	-482.5(11)	1804.9(7)	15.4(2)
C(8')	5322.8(12)	248.5(11)	1950.1(7)	15.3(2)
C(9')	5560.7(12)	1737.3(11)	1860.0(7)	15.5(2)
C(10')	7120.9(14)	1788.5(13)	1610.2(9)	23.9(2)
C(11')	4212.5(15)	1985.4(13)	1082.3(8)	22.6(2)
C(12')	5694.1(13)	2884.2(11)	2792.6(8)	17.7(2)

Ag-P(3)	2.4537(3)	C(9)-C(11)	1.5314(16)
Ag-P(3')	2.4714(3)	C(9)-C(12)	1.5335(16)
Ag-Cl#1	2.5715(3)	N(1')-C(2')	1.3614(13)
Ag-Cl	2.6340(3)	N(1')-C(7A')	1.3869(13)
N(1)-C(2)	1.3549(13)	N(1')-C(8')	1.4696(13)
N(1)-C(7A)	1.3919(13)	C(2')-P(3')	1.7072(11)
N(1)-C(8)	1.4709(13)	P(3')-C(3A')	1.7658(11)
C(2)-P(3)	1.7125(11)	C(3A')-C(4')	1.4087(15)
P(3)-C(3A)	1.7699(11)	C(3A')-C(7A')	1.4121(15)
C(3A)-C(4)	1.4074(15)	C(4')-C(5')	1.3737(18)
C(3A)-C(7A)	1.4121(15)	C(5')-C(6')	1.405(2)
C(4)-C(5)	1.3777(19)	C(6')-C(7')	1.3838(17)
C(5)-C(6)	1.402(2)	C(7')-C(7A')	1.4030(15)
C(6)-C(7)	1.3822(17)	C(8')-C(9')	1.5445(15)
C(7)-C(7A)	1.4025(15)	C(9')-C(11')	1.5303(15)
C(8)-C(9)	1.5392(15)	C(9')-C(12')	1.5315(15)
C(9)-C(10)	1.5308(15)	C(9')-C(10')	1.5336(15)
$P(3) \land \sigma P(3')$	106 815(10)	N(1) C(7A) C(7)	126 70(10)
$P(3) \land q C1#1$	100.813(10) 114.571(10)	N(1)-C(7A)-C(7) N(1)-C(7A)-C(3A)	120.70(10) 112.12(0)
P(3)-Ag-Cl#1 P(3') Ag Cl#1	114.371(10) 115.576(10)	$\Gamma(1)-C(7A)-C(3A)$	112.13(9) 121.17(10)
$P(3) \land q C1$	113.376(10) 121.406(10)	N(1) C(8) C(9)	121.17(10) 115.26(8)
P(3) Ag Cl	121.400(10) 100.201(0)	$\Gamma(1) = C(0) = C(3)$	110.17(0)
$\Gamma(3)$ -Ag-Cl	07703(8)	C(10) - C(9) - C(11) C(10) - C(9) - C(12)	10.17(9) 108 70(10)
$A \alpha \# 1 C 1 A \alpha$	97.795(8)	C(10)-C(9)-C(12) C(11) C(0) C(12)	108.70(10) 100.62(0)
Ag#I-CI-Ag	82.200(8)	C(11)-C(9)-C(12)	109.03(9)
C(2)-N(1)-C(7A)	112.59(9)	C(10)-C(9)-C(8)	106.22(9)
C(2)-N(1)-C(8)	121.94(9)	C(11)-C(9)-C(8)	111.06(9)
C(/A)-N(1)-C(8)	125.39(9)	C(12)-C(9)-C(8)	110.98(9)
N(1)-C(2)-P(3)	115.06(8)	$C(2^{+})-N(1^{+})-C(7A^{+})$	112.95(9)
C(2)-P(3)-C(3A)	89.18(5)	C(2')-N(1')-C(8')	121.24(9)
C(2)-P(3)-Ag	117.48(4)	C(7A')-N(1')-C(8')	125.81(9)
C(3A)-P(3)-Ag	133.89(4)	N(1')-C(2')-P(3')	114.30(8)
C(4)-C(3A)-C(7A)	119.10(10)	C(2')-P(3')-C(3A')	89.90(5)
C(4)-C(3A)-P(3)	129.95(9)	C(2')-P(3')-Ag	135.41(4)
C(7A)-C(3A)-P(3)	110.94(8)	C(3A')-P(3')-Ag	131.36(4)
C(5)-C(4)-C(3A)	119.60(11)	C(4')-C(3A')-C(7A')	119.44(10)
C(4)-C(5)-C(6)	120.56(11)	C(4')-C(3A')-P(3')	129.93(9)
C(7)-C(6)-C(5)	121.40(11)	C(7A')-C(3A')-P(3')	110.54(8)
C(6)-C(7)-C(7A)	118.16(11)	C(5')-C(4')-C(3A')	119.54(11)

Table 3. Bond lengths [Å] and angles [°] for compound 2.	
--	--

C(4')-C(5')-C(6')	120.59(11)	C(11')-C(9')-C(12')	109.82(9)
C(7')-C(6')-C(5')	121.28(11)	C(11')-C(9')-C(10')	109.56(9)
C(6')-C(7')-C(7A')	118.38(11)	C(12')-C(9')-C(10')	109.36(9)
N(1')-C(7A')-C(7')	126.91(10)	C(11')-C(9')-C(8')	111.40(9)
N(1')-C(7A')-C(3A')	112.29(9)	C(12')-C(9')-C(8')	110.74(8)
C(7')-C(7A')-C(3A')	120.77(10)	C(10')-C(9')-C(8')	105.88(9)
N(1')-C(8')-C(9')	115.10(8)		

Symmetry transformations used to generate equivalent atoms:

#1 -x,-y,-z+1

Table 4. Torsion angles [°] for compound **2**.

P(3)-Ag-Cl-Ag#1	-125.120(10)	N(1')-C(2')-P(3')-Ag	-160.17(6)
P(3')-Ag-Cl-Ag#1	117.864(9)	P(3)-Ag-P(3')-C(2')	12.01(5)
C(7A)-N(1)-C(2)-P(3)	2.72(12)	Cl#1-Ag-P(3')-C(2')	-116.76(5)
C(8)-N(1)-C(2)-P(3)	179.61(8)	Cl-Ag-P(3')-C(2')	139.42(5)
N(1)-C(2)-P(3)-C(3A)	-3.07(9)	P(3)-Ag-P(3')-C(3A')	-140.84(5)
N(1)-C(2)-P(3)-Ag	-143.79(7)	Cl#1-Ag-P(3')-C(3A')	90.39(5)
P(3')-Ag-P(3)-C(2)	-16.85(4)	Cl-Ag-P(3')-C(3A')	-13.43(5)
Cl#1-Ag-P(3)-C(2)	112.50(4)	C(2')-P(3')-C(3A')-C(4')	177.34(11)
Cl-Ag-P(3)-C(2)	-130.51(4)	Ag-P(3')-C(3A')-C(4')	-21.34(13)
P(3')-Ag-P(3)-C(3A)	-135.40(5)	C(2')-P(3')-C(3A')-C(7A')	0.89(8)
Cl#1-Ag-P(3)-C(3A)	-6.05(5)	Ag-P(3')-C(3A')-C(7A')	162.21(6)
Cl-Ag-P(3)-C(3A)	110.94(5)	C(7A')-C(3A')-C(4')-C(5')	0.82(17)
C(2)-P(3)-C(3A)-C(4)	-178.20(11)	P(3')-C(3A')-C(4')-C(5')	-175.37(9)
Ag-P(3)-C(3A)-C(4)	-49.40(13)	C(3A')-C(4')-C(5')-C(6')	-0.89(18)
C(2)-P(3)-C(3A)-C(7A)	2.60(8)	C(4')-C(5')-C(6')-C(7')	0.26(19)
Ag-P(3)-C(3A)-C(7A)	131.40(6)	C(5')-C(6')-C(7')-C(7A')	0.44(18)
C(7A)-C(3A)-C(4)-C(5)	-0.47(16)	C(2')-N(1')-C(7A')-C(7')	-176.73(10)
P(3)-C(3A)-C(4)-C(5)	-179.62(9)	C(8')-N(1')-C(7A')-C(7')	2.34(17)
C(3A)-C(4)-C(5)-C(6)	0.92(18)	C(2')-N(1')-C(7A')-C(3A')	1.26(13)
C(4)-C(5)-C(6)-C(7)	-0.60(19)	C(8')-N(1')-C(7A')-C(3A')	-179.66(9)
C(5)-C(6)-C(7)-C(7A)	-0.18(18)	C(6')-C(7')-C(7A')-N(1')	177.34(11)
C(2)-N(1)-C(7A)-C(7)	178.71(10)	C(6')-C(7')-C(7A')-C(3A')	-0.50(16)
C(8)-N(1)-C(7A)-C(7)	1.96(17)	C(4')-C(3A')-C(7A')-N(1')	-178.26(9)
C(2)-N(1)-C(7A)-C(3A)	-0.59(13)	P(3')-C(3A')-C(7A')-N(1')	-1.38(11)
C(8)-N(1)-C(7A)-C(3A)	-177.35(9)	C(4')-C(3A')-C(7A')-C(7')	-0.12(16)
C(6)-C(7)-C(7A)-N(1)	-178.63(10)	P(3')-C(3A')-C(7A')-C(7')	176.76(8)
C(6)-C(7)-C(7A)-C(3A)	0.62(16)	C(2')-N(1')-C(8')-C(9')	-88.93(12)
C(4)-C(3A)-C(7A)-N(1)	179.05(10)	C(7A')-N(1')-C(8')-C(9')	92.07(12)
P(3)-C(3A)-C(7A)-N(1)	-1.66(11)	N(1')-C(8')-C(9')-C(11')	-69.96(12)
C(4)-C(3A)-C(7A)-C(7)	-0.30(16)	N(1')-C(8')-C(9')-C(12')	52.58(12)
P(3)-C(3A)-C(7A)-C(7)	178.99(8)	N(1')-C(8')-C(9')-C(10')	171.02(9)
C(2)-N(1)-C(8)-C(9)	86.68(12)		
C(7A)-N(1)-C(8)-C(9)	-96.85(12)		
N(1)-C(8)-C(9)-C(10)	-174.77(9)		
N(1)-C(8)-C(9)-C(11)	65.43(12)		
N(1)-C(8)-C(9)-C(12)	-56.78(12)		
C(7A')-N(1')-C(2')-P(3')	-0.57(12)		
C(8')-N(1')-C(2')-P(3')	-179.69(7)		
N(1')-C(2')-P(3')-C(3A')	-0.20(8)		

Symmetry transformations used to generate equivalent atoms: #1 -x,-y,-z+1

Table 1. Crystal data and structure refinement for compound **5**.

Identification code Empirical formula	grehg CaeHaiClaHøNPa	
Formula weight	680 87	
Temperature	100(2) K	
Wavelength	0 71073 Å	
Crystal system	Monoclinic	
Space group	$P2_1/c$	
Unit cell dimensions	a = 9.3339(3) Å	$\alpha = 90^{\circ}$
	b = 287742(9) Å	$\beta = 94.243(4)^{\circ}$
	c = 9.6247(3) Å	$\gamma = 90^{\circ}$
Volume	$2577 87(14) Å^{3}$	1 30
Z	4	
Density (calculated)	1.754 Mg/m ³	
Absorption coefficient	6.316 mm ⁻¹	
F(000)	1312	
Crystal size	0.20 x 0.15 x 0.05 mm ³	
Theta range for data collection	2.19 to 30.03°	
Index ranges	-12<=h<=13, -40<=k<=40), -13<=l<=13
Reflections collected	96745	
Independent reflections	7494 [R(int) = 0.0520]	
Completeness to theta = 30.03°	99.3 %	
Absorption correction	Semi-empirical from equi	valents
Max. and min. transmission	1.00000 and 0.59323	
Refinement method	Full-matrix least-squares of	on F ²
Data / restraints / parameters	7494 / 0 / 294	
Goodness-of-fit on F ²	1.127	
Final R indices [I>2sigma(I)]	R1 = 0.0255, WR2 = 0.042	26
R indices (all data)	R1 = 0.0333, WR2 = 0.044	42
Largest diff. peak and hole	0.768 and -0.915 e.Å ⁻³	

Table 2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³) for compound **5**. U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

	Х	у	Z	U(eq)	
Hg	2387.6(1)	1313.9(1)	3632.2(1)	16.3(1)	
Cl(1)	1163.8(6)	1042.0(2)	5621.7(6)	18.0(1)	
Cl(2)	3558.0(7)	2070.2(2)	4193.8(7)	21.2(1)	
P(1)	3583.6(6)	812.7(2)	2017.6(6)	12.5(1)	
N(1)	1582(2)	2153.9(7)	564(2)	16.5(4)	
C(2)	1721(3)	1689.1(8)	598(3)	15.0(5)	
P(3)	363.9(7)	1419.6(2)	1505.6(7)	15.8(1)	
C(3A)	-285(3)	1981.2(8)	1940(3)	16.4(5)	
C(4)	-1384(3)	2114.7(9)	2777(3)	19.5(5)	
C(5)	-1692(3)	2579.6(9)	2978(3)	21.2(5)	
C(6)	-906(3)	2919.3(9)	2296(3)	23.4(6)	
C(7)	178(3)	2801.3(9)	1456(3)	21.0(5)	
C(7A)	490(3)	2331.7(8)	1303(3)	16.8(5)	
C(8)	-2846(3)	2721.3(10)	3915(3)	29.0(7)	
C(11)	3746(3)	1098.4(8)	353(2)	14.3(5)	
C(12)	2880(3)	1473.3(8)	-157(3)	14.5(5)	
C(13)	3150(3)	1665.0(9)	-1454(3)	20.1(5)	
C(14)	4217(3)	1493.1(9)	-2235(3)	21.6(5)	
C(15)	5074(3)	1128.8(9)	-1726(3)	20.4(5)	
C(16)	4848(3)	936.1(9)	-441(3)	18.2(5)	
C(21)	2554(2)	287.0(8)	1679(2)	13.9(5)	
C(22)	2064(3)	50.4(9)	2815(3)	22.2(6)	
C(23)	1342(3)	-369.0(10)	2618(3)	26.0(6)	
C(24)	1092(3)	-549.3(9)	1293(3)	20.3(5)	
C(25)	1561(3)	-314.3(9)	159(3)	21.4(5)	
C(26)	2287(3)	103.4(9)	352(3)	17.8(5)	
C(31)	5372(3)	629.9(8)	2645(3)	15.0(5)	
C(32)	6334(3)	972.0(9)	3167(3)	21.1(5)	
C(33)	7706(3)	846.9(10)	3684(3)	23.7(6)	
C(34)	8116(3)	383.7(10)	3697(3)	22.9(6)	
C(35)	7162(3)	43.5(10)	3208(3)	23.0(6)	
C(36)	5788(3)	165.2(9)	2683(3)	18.2(5)	

Hg-Cl(1)	2.4305(6)	C(11)-C(16)	1.405(3)
Hg-P(1)	2.4489(6)	C(11)-C(12)	1.415(3)
Hg-Cl(2)	2.4766(6)	C(12)-C(13)	1.404(3)
Hg-P(3)	2.6978(7)	C(13)-C(14)	1.383(4)
P(1)-C(21)	1.809(2)	C(14)-C(15)	1.386(4)
P(1)-C(31)	1.811(2)	C(15)-C(16)	1.386(4)
P(1)-C(11)	1.817(2)	C(21)-C(26)	1.388(3)
N(1)-C(2)	1.344(3)	C(21)-C(22)	1.394(3)
N(1)-C(7A)	1.383(3)	C(22)-C(23)	1.388(4)
C(2)-C(12)	1.483(3)	C(23)-C(24)	1.381(4)
C(2)-P(3)	1.770(3)	C(24)-C(25)	1.382(4)
P(3)-C(3A)	1.786(3)	C(25)-C(26)	1.386(3)
C(3A)-C(4)	1.405(4)	C(31)-C(36)	1.392(3)
C(3A)-C(7A)	1.408(3)	C(31)-C(32)	1.401(3)
C(4)-C(5)	1.385(4)	C(32)-C(33)	1.386(4)
C(5)-C(6)	1.413(4)	C(33)-C(34)	1.387(4)
C(5)-C(8)	1.511(4)	C(34)-C(35)	1.383(4)
C(6)-C(7)	1.384(4)	C(35)-C(36)	1.388(4)
C(7)-C(7A)	1.392(3)		
Cl(1)-Hg-P(1)	124.98(2)	С(2)-Р(3)-Нg	86.40(8)
Cl(1)-Hg-Cl(2)	109.65(2)	C(3A)-P(3)-Hg	98.92(8)
P(1)-Hg-Cl(2)	116.20(2)	C(4)-C(3A)-C(7A)	118.3(2)
Cl(1)-Hg-P(3)	106.89(2)	C(4)-C(3A)-P(3)	131.0(2)
P(1)-Hg-P(3)	84.92(2)	C(7A)-C(3A)-P(3)	110.63(19)
Cl(2)-Hg-P(3)	109.83(2)	C(5)-C(4)-C(3A)	120.8(2)
C(21)-P(1)-C(31)	106.35(11)	C(4)-C(5)-C(6)	118.9(2)
C(21)-P(1)-C(11)	107.31(11)	C(4)-C(5)-C(8)	120.5(2)
C(31)-P(1)-C(11)	106.86(11)	C(6)-C(5)-C(8)	120.5(2)
C(21)-P(1)-Hg	110.22(8)	C(7)-C(6)-C(5)	122.0(2)
C(31)-P(1)-Hg	114.32(8)	C(6)-C(7)-C(7A)	117.9(2)
C(11)-P(1)-Hg	111.40(8)	N(1)-C(7A)-C(7)	125.5(2)
C(2)-N(1)-C(7A)	115.4(2)	N(1)-C(7A)-C(3A)	112.4(2)
N(1)-C(2)-C(12)	118.5(2)	C(7)-C(7A)-C(3A)	122.1(2)
N(1)-C(2)-P(3)	112.14(18)	C(16)-C(11)-C(12)	119.1(2)
C(12)-C(2)-P(3)	129.25(18)	C(16)-C(11)-P(1)	116.20(18)
C(2)-P(3)-C(3A)	89.22(12)	C(12)-C(11)-P(1)	124.63(19)

Table 3. Bond lengths [Å] and angles [°] for compound **5**.

C(13)-C(12)-C(11)	118.2(2)
C(13)-C(12)-C(2)	117.2(2)
C(11)-C(12)-C(2)	124.6(2)
C(14)-C(13)-C(12)	121.8(2)
C(13)-C(14)-C(15)	119.9(2)
C(16)-C(15)-C(14)	119.7(2)
C(15)-C(16)-C(11)	121.2(2)
C(26)-C(21)-C(22)	119.3(2)
C(26)-C(21)-P(1)	122.73(19)
C(22)-C(21)-P(1)	117.91(18)
C(23)-C(22)-C(21)	120.1(2)
C(24)-C(23)-C(22)	120.0(3)
C(23)-C(24)-C(25)	120.3(2)
C(24)-C(25)-C(26)	119.9(2)
C(25)-C(26)-C(21)	120.4(2)
C(36)-C(31)-C(32)	119.7(2)
C(36)-C(31)-P(1)	122.43(19)
C(32)-C(31)-P(1)	117.80(19)
C(33)-C(32)-C(31)	119.8(2)
C(32)-C(33)-C(34)	120.0(3)
C(35)-C(34)-C(33)	120.4(2)
C(34)-C(35)-C(36)	120.0(2)
C(35)-C(36)-C(31)	120.0(2)

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)	
N(1)-H(01)Cl(2)#1	0.83(3)	2.42(3)	3.238(2)	169(3)	
C(7)-H(7)Cl(1)#1	0.95	2.73	3.560(3)	147.1	
C(23)-H(23)Cl(1)#2	0.95	2.74	3.560(3)	145.5	
C(35)-H(35)Cl(1)#3	0.95	2.75	3.634(3)	154.6	

Table 4. Hydrogen bonds [Å and °] for compound 5.

Symmetry transformations used to generate equivalent atoms:

#1 x,-y+1/2,z-1/2 #2 -x,-y,-z+1

#3 -x+1,-y,-z+1

Packing of $HgCl_2$ complex 5