Supplementary Information

$\operatorname{Ln}[\mathrm{DO} 3 \mathrm{~A}-\mathrm{N}-\alpha$-(pyrenebutanamido)propionate] complexes: optimized relaxivity and NIR optical properties

M.F. Ferreira ${ }^{a}$, G. Pereira ${ }^{a}$, A.F. Martins ${ }^{b, c}$, C. Martins ${ }^{b}$, M.I.M. Prata ${ }^{d}$, S. Petoud ${ }^{c}$, E. Toth c, P.M.T. Ferreira ${ }^{a}$, J.A. Martins ${ }^{a, e^{*}}$ C.F.G.C. Geraldes ${ }^{b}$

${ }^{a}$ Centro de Química, Campus de Gualtar, Universidade do Minho, 4710-057 Braga, Portugal; ${ }^{e}$ Currently in sabatical leave at Dep. of Chemistry University of Bath, UK
${ }^{b}$ Department of Life Sciences, Faculty of Science and Technology, Centre of Neurosciences and Cell Biology, and Coimbra Chemistry Centre, University of Coimbra, 3001-401 Coimbra, Portugal
${ }^{c}$ Centre de Biophysique Moléculaire CNRS, Rue Charles Sadron, 45071 Orléans Cedex 2 France
${ }^{d}$ ICNAS and IBILI, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal

	z-average $($ r. nm $)$	Radius (nm) $(\%$ volume $)$	Radius (nm) $(\%$ intensity $)$
$\left(5 \mathrm{mM}, \mathrm{pH} 7.0,25^{\circ} \mathrm{C}\right)$	48.9	$1.57(100 \%)$	$73.1(61.9 \%)$

Figure S1. Size distribution in: a) volume (\%); b) intensity (\%) for a GdL solution ($5.0 \mathrm{mM}, \mathrm{pH} 7.0$, $\left.25^{\circ} \mathrm{C}\right)$ at a concentration well above the $\mathrm{cmc}(0.6 \mathrm{mM})$.

Figure S2. Temperature dependence of the water proton relaxivity for $\mathrm{Gd} \mathbf{L}(20 \mathrm{MHz}, 1 \mathrm{mM}, \mathrm{pH} 6.0)$.

Figure S3. pH dependence of the water proton relaxivity for $\mathbf{G d L}\left(20 \mathrm{MHz}, 1 \mathrm{mM}, 25^{\circ} \mathrm{C}\right)$.

Figure S4. Evolution of the relative water proton paramagnetic longitudinal relaxation rate $R_{l p}(\mathrm{t}) / R_{l p}(0)\left(20 \mathrm{MHz}, \mathrm{pH} 7.1,25^{\circ} \mathrm{C}\right)$ for a 1.5 mM solution of GdL in 10 mM phosphate buffer(O) and in phosphate buffer containing an equimolar amount of $\mathrm{Zn}^{2+}(\bullet)$.

Figure S5. UV-Vis spectra for the free ligand \mathbf{L} and for the $\mathrm{Gd} \mathbf{L}$ complex in water $\left(1.0 \times 10^{-5} \mathrm{M}, \mathrm{pH}\right.$ $7.0,25^{\circ} \mathrm{C}$).

Figure S6. Fluorescence spectra for free ligand \mathbf{L} in non-deoxygenated water $\left(\mathrm{pH} 7.0,25^{\circ} \mathrm{C}\right)$ over the concentration range $5 \times 10^{-5}-5 \times 10^{-3} \mathrm{~mol} . \mathrm{dm}^{-3}\left(\lambda_{\mathrm{exc}}=345 \mathrm{~nm}\right)$.

Figure S7. Changes in the emission properties of the free ligand \mathbf{L} as the ratio of the fluorescence emission intensity for the excimer $(490 \mathrm{~nm})$ and for the monomer $(377 \mathrm{~nm})\left(\mathrm{I}_{\mathrm{E}} / \mathrm{I}_{\mathrm{M}}\right)$ as function of ligand concentration. Line fitted to equation S1.

The experimental data in Figure 5 (manuscript) and Figure S6 were fitted (Prima GraphPad) to a sigmoidal model (equation S1). $[1,2]$

$$
\left(\frac{I_{E x c}}{I_{M o n o}}\right)=\left(\frac{I_{E x c}}{I_{M o n o}}\right)_{0}+A_{1} c+d\left(A_{2}-A_{1}\right) \ln \left(\frac{1+e^{(c-c m c) / d}}{e^{-c m c / d}}\right)
$$

Equation S1

c - complex ($\mathbf{G d} \mathbf{L}$)) or free ligand (\mathbf{L}) concentration;
A_{1} and A_{2} - represent the limits of sigmoidal function that describes the behaviourof $d\left(I_{\text {Exc }} / I_{\text {Mono }}\right) / d c$ (derivative of $I_{\text {Exc }} / I_{\text {Mono }}$ in order to c);:
d - is the time constant of the function and is related to the range of concentration over which the abrupt change in $I_{\text {Exc }} / I_{\text {Mono }}$ occurs;
$c m c$ - is the center of the sigmoidal function.

Table S1. Best fit values for the fitting (Prima GraphPad) of the experimental data of $I_{E x c} / I_{\text {Mono }} v s$ [GdL] (Figure 5 in manuscript and Figure S6) to equation S1.

Best-fit values	GdL
$\left(\mathrm{I}_{\mathrm{Exc}} / \mathrm{I}_{\text {Mono }}\right)_{0}$	$-1,764$
$\mathrm{~A}_{1}$	0,3660
d	0,007795
$\mathrm{~A}_{2}$	3,119
$c m c$	0,6454
Std. Error	
$\left(\mathrm{I}_{\text {Exc }} / \mathrm{I}_{\text {Mono }}\right)_{0}$	0,007529
$\mathrm{~A}_{1}$	0,06346
d	71873
$\mathrm{~A}_{2}$	0,002088
$c m c$	0,01454

The E titration data (Figure 7 in manuscript) were fitted to equation $\mathbf{S 2}$ with n, number of equivalent binding sites, fixed to 1 .

$$
R_{1}^{p o b s}=10^{3} \times\left\{\begin{array}{l}
\left(r_{1}^{f} \cdot c_{1}\right)+\frac{1}{2}\left(r_{1}^{c}-r_{1}^{f}\right) \times \\
\left(n \cdot c_{H S A}+c_{1}+K_{A}^{-1}-\sqrt{\left(n \cdot c_{H S A}+c_{1}+K_{A}^{-1}\right)^{2}-4 \cdot n \cdot c_{H S A} \cdot C_{1}}\right)
\end{array}\right\}
$$

Equation S2

n - number of equivalent binding sites, fixed to 1 in the fitting.
$r_{I}{ }^{f}$ - relaxivity of the free GdL form, non-complexed with HSA
$r_{l}{ }^{c}$ - relaxivity of the GdL form bound to HSA
c_{1} - analytical concentration of GdL
$c_{H S A}$ - analytical concentration of HSA
K_{A} - association constant GdL/HSA

Table S2. Biodistribution, stated as percentage of injected dose per gram of organ (\%ID/g $\pm \mathrm{SD}$), of ${ }^{153} \mathrm{SmL}$ in Wistar rats at 1 and 24 hours after i.v. injection. Results are the mean of 4 animals.

Organ	1 hour \%ID+SD	24 hours \%ID+SD
Blood	0.3071 ± 0.0290	$0.0015 \pm 6.5 \times 10^{-5}$
Liver	0.2095 ± 0.0617	0.4701 ± 0.1216
Spleen	0.1784 ± 0.0581	0.3012 ± 0.1646
Kidney	0.0629 ± 0.0105	0.0242 ± 0.0026
Heart	0.0385 ± 0.0224	0.0044 ± 0.0014
Lung	0.1084 ± 0.0220	0.0274 ± 0.0104
S. Intest.	0.0352 ± 0.0190	0.0066 ± 0.0011
L. Intest.	0.0125 ± 0.0015	0.0035 ± 0.0029
Bone	0.0365 ± 0.0078	0.0411 ± 0.0057
Muscle	0.0095 ± 0.0048	0.011 ± 0.00010
Brain + Cerebellum	0.0213 ± 0.0134	$0.0007 \pm 8.15 \times 10^{-5}$

APPENDIX 1: Analysis of NMRD and ${ }^{17} \mathrm{O}$ NMR data

NMRD and ${ }^{17} \mathrm{O}$ NMR data have been analysed within the framework of Solomon-Bloembergen-Morgan theory.

${ }^{17}$ O NMR spectroscopy

From the measured ${ }^{17} \mathrm{O}$ NMR relaxation rates and angular frequencies of the paramagnetic solutions, $1 / T_{1}, 1 / T_{2}$ and ω, and of the acidified water reference, $1 / T_{I A}$, $1 / T_{2 A}$ and ω_{A}, one can calculate the reduced relaxation rates and chemical shifts, $1 / T_{2 r}$ and $\Delta \omega_{r}$, which may be written as in Equations (A1)-(A3), where, $1 / T_{1 m}, 1 / T_{2 m}$ is the relaxation rate of the bound water and $\Delta \omega_{m}$ is the chemical shift difference between bound and bulk water, τ_{m} is the mean residence timeor the inverse of the water exchange rate $k_{e x}$ and P_{m} is the mole fraction of the bound water. [3, 4]

$$
\begin{equation*}
\frac{1}{T_{l r}}=\frac{1}{P_{m}}\left[\frac{1}{T_{1}}-\frac{1}{T_{l A}}\right]=\frac{1}{T_{1 m}+\tau_{m}}+\frac{1}{T_{1 o s}} \tag{A1}
\end{equation*}
$$

$\frac{1}{T_{2 r}}=\frac{1}{P_{m}}\left[\frac{1}{T_{2}}-\frac{1}{T_{2 A}}\right]=\frac{1}{\tau_{m}} \frac{T_{2 m}^{-2}+\tau_{m}^{-1} T_{2 m^{-1}}+\Delta \omega_{m}^{2}}{\left(\tau_{m}^{-1}+T_{2 m}^{-1}\right)^{2}+\Delta \omega_{m}^{2}}+\frac{1}{T_{2 o s}}$
$\Delta \omega_{r}=\frac{1}{P_{m}}\left(\omega-\omega_{A}\right)=\frac{\Delta \omega_{m}}{\left(1+\tau_{m} T_{2 m}^{-1}\right)^{2}+\tau_{m}^{2} \Delta \omega_{m}^{2}}+\Delta \omega_{o s}$

The outer sphere contributions to the ${ }^{17} \mathrm{O}$ relaxation rates $1 / T_{1 O S}$ and $1 / T_{2 O S}$ can are neglected according to previous studies.[5] Therefore, Equations (A1-A2) can be further
simplified into Equations (A4) and (A5):

$$
\begin{align*}
& \frac{1}{T_{1 r}}=\frac{1}{T_{1 m}+\tau_{m}} \tag{A4}\\
& \frac{1}{T_{2 r}}=\frac{1}{T_{2 m}+\tau_{m}} \tag{A5}
\end{align*}
$$

The exchange rate is supposed to obey the Eyring equation. In equation (A6) ΔS^{\ddagger} and $\Delta \mathrm{H}^{\ddagger}$ are the entropy and enthalpy of activation for the water exchange process, and $\mathrm{k}_{\mathrm{ex}}{ }^{298}$ is the exchange rate at 298.15 K .

$$
\begin{equation*}
\frac{1}{\tau_{m}}=k_{e x}=\frac{k_{B} T}{h} \exp \left\{\frac{\Delta S^{\ddagger}}{R}-\frac{\Delta H^{\ddagger}}{R T}\right\}=\frac{k_{e x}^{298} T}{298.15} \exp \left\{\frac{\Delta H^{\ddagger}}{R}\left(\frac{1}{298.15}-\frac{1}{T}\right)\right\} \tag{A6}
\end{equation*}
$$

In the transverse relaxation, the scalar contribution, $1 / T_{2 \mathrm{sc}}$, is the most important [Equation (A7)]. $1 / \tau_{s 1}$ is the sum of the exchange rate constant and the electron spin relaxation rate [Equation (A8)].

$$
\begin{align*}
& \frac{1}{T_{2 \mathrm{~m}}} \cong \frac{1}{T_{2 \mathrm{sc}}}=\frac{S(S+1)}{3}\left(\frac{A}{\hbar}\right)^{2}\left(\tau_{s 1}+\frac{\tau_{s 2}}{1+\omega_{s}^{2} \tau_{s 2}^{2}}\right) \\
& \frac{1}{\tau_{s 1}}=\frac{1}{\tau_{m}}+\frac{1}{T_{1 e}} \tag{A8}
\end{align*}
$$

The ${ }^{17} \mathrm{O}$ longitudinal relaxation rates in Gd^{3+} solutions are the sum of the contributions of the dipole-dipole ($d d$) and quadrupolar (q) mechanisms as expressed by Equations
(A11-A13) for non-extreme narrowing conditions, where γ_{S} is the electron and γ_{i} is the nuclear gyromagnetic ratio $\left(\gamma_{S}=1.76 \times 10^{11} \mathrm{rad} \mathrm{s}^{-1} \mathrm{~T}^{-1}, \gamma_{I}=-3.626 \times 10^{7} \mathrm{rad} \mathrm{s}^{-1} \mathrm{~T}^{-1}\right), r_{G d O}$ is the effective distance between the electron charge and the ${ }^{17} \mathrm{O}$ nucleus, I is the nuclear spin $\left(5 / 2\right.$ for $\left.{ }^{17} \mathrm{O}\right), \chi$ is the quadrupolar coupling constant and η is an asymmetry parameter :

$$
\begin{equation*}
\frac{1}{T_{l m}}=\frac{1}{T_{l d d}}+\frac{l}{T_{1 q}} \tag{A9}
\end{equation*}
$$

with:

$$
\begin{align*}
& \frac{1}{T_{1 d d}}=\frac{2}{15}\left(\frac{\mu_{0}}{4 \pi}\right)^{2} \frac{\hbar^{2} \gamma_{I}^{2} \gamma_{S}^{2}}{r_{G d O}^{6}} S(S+1) \times\left[3 J\left(\omega_{I} ; \tau_{d 1}\right)+7 J\left(\omega_{S} ; \tau_{d 2}\right)\right] \tag{A10}\\
& \frac{1}{T_{1 q}}=\frac{3 \pi^{2}}{10} \frac{2 I+3}{I^{2}(2 I-1)} \chi^{2}\left(1+\eta^{2} / 3\right) \times\left[0.2 J_{1}\left(\omega_{I}\right)+0.8 J_{2}\left(\omega_{I}\right)\right] \tag{A11}
\end{align*}
$$

In Equation (A3) the chemical shift of the bound water molecule, $\Delta \omega_{m}$, depends on the hyperfine interaction between the Gd^{3+} electron spin and the ${ }^{17} \mathrm{O}$ nucleus and is directly proportional to the scalar coupling constant, $\frac{A}{\hbar}$, as expressed in Equation (A12).[6]

$$
\begin{equation*}
\Delta \omega_{m}=\frac{g_{L} \mu_{B} S(S+1) B}{3 k_{B} T} \frac{A}{\hbar} \tag{A12}
\end{equation*}
$$

The isotopic Landé g factor is equal to 2.0 for the Gd^{3+}, B represents the magnetic field, and k_{B} is the Boltzmann constant.

The outer-sphere contribution to the chemical shift is assumed to be linearly related to $\Delta \omega_{m}$ by a constant $C_{o s}$ [Equation (A13)]. [7]

$$
\begin{equation*}
\Delta \omega_{o s}=C_{o s} \Delta \omega_{m} \tag{A13}
\end{equation*}
$$

NMRD

The measured longitudinal proton relaxation rate, $R_{1}^{o b s}=1 / T_{1}^{o b s}$, is the sum of a paramagnetic and a diamagnetic contribution as expressed in Equation (A14), where r_{1} is the proton relaxivity:

$$
\begin{equation*}
R_{1}^{o b s}=R_{1}^{d}+R_{1}^{p}=R_{1}^{d}+\mathrm{r}_{1}\left[\mathrm{Gd}^{3+}\right] \tag{A14}
\end{equation*}
$$

The relaxivity can be divided into an inner and an outer sphere term as follows:

$$
\begin{equation*}
r_{1}=r_{\text {iis }}+r_{\text {los }} \tag{A15}
\end{equation*}
$$

The inner sphere term is given in Equation (A16), where q is the number of inner sphere
water molecules. [8]

$$
\begin{equation*}
r_{l i s}=\frac{1}{1000} \times \frac{q}{55.55} \times \frac{1}{T_{1 m}^{H}+\tau_{m}} \tag{A16}
\end{equation*}
$$

The longitudinal relaxation rate of inner sphere protons, $1 / T_{l m}{ }^{H}$ is expressed by Equation (A11), where $r_{G d H}$ is the effective distance between the electron charge and the
${ }^{1} \mathrm{H}$ nucleus, ω_{I} is the proton resonance frequency and ω_{S} is the Larmor frequency of the Gd^{3+} electron spin.

$$
\begin{align*}
& \frac{1}{T_{1 m}^{H}}=\frac{2}{15}\left(\frac{\mu_{0}}{4 \pi}\right)^{2} \frac{\hbar^{2} \gamma_{1}^{2} \gamma_{S}^{2}}{r_{G d H}^{6}} S(S+1) \times\left[3 J\left(\omega_{I} ; \tau_{d 1}\right)+7 J\left(\omega_{S} ; \tau_{d 2}\right)\right] \tag{A17}\\
& \frac{1}{\tau_{d i}}=\frac{1}{\tau_{m}}+\frac{1}{\tau_{R H}}+\frac{1}{T_{i e}} \quad \text { for } i=1,2 \tag{A18}
\end{align*}
$$

where τ_{RH} is the rotational correlation time of the $\mathrm{Gd}-\mathrm{H}_{\text {water }}$ vector.

For small molecular weight chelates (fast rotation), the spectral density function is expressed as in Equation (A19).

$$
\begin{equation*}
J(\omega ; \tau)=\left(\frac{\tau}{1+\omega^{2} \tau^{2}}\right) \tag{A19}
\end{equation*}
$$

For slowly rotating species, the spectral density functions are described the LipariSzabo approach.[9] In this model we distinguish two statistically independent motions;
a rapid local motion with a correlation time τ_{l} and a slower global motion with a correlation time τ_{g}. Supposing the global molecular reorientation is isotropic, the relevant spectral density functions are expressed as in Equations (A20-A24), where the general order parameter S^{2} describes the degree of spatial restriction of the local motion. If the local motion is isotropic, $S^{2}=0$; if the rotational dynamics is only governed by the global motion, $S^{2}=1$.

$$
\begin{equation*}
J\left(\omega_{I} ; \tau_{d 1}\right)=\left(\frac{S^{2} \tau_{d 1 g}}{1+\omega_{I}^{2} \tau_{d 1 g}^{2}}+\frac{\left(1-S^{2}\right) \tau_{d 1}}{1+\omega_{I}^{2} \tau_{d 1}^{2}}\right) \tag{A20}
\end{equation*}
$$

$$
\begin{equation*}
J\left(\omega_{S} ; \tau_{d 2}\right)=\left(\frac{S^{2} \tau_{d 2 g}}{1+\omega_{S}^{2} \tau_{d 2 g}^{2}}+\frac{\left(1-S^{2}\right) \tau_{d 2}}{1+\omega_{S}^{2} \tau_{d 2}^{2}}\right) \tag{A21}
\end{equation*}
$$

$$
\begin{equation*}
\frac{1}{\tau_{d i g}}=\frac{1}{\tau_{m}}+\frac{1}{\tau_{g}}+\frac{1}{T_{i e}} i=1,2 \tag{A22}
\end{equation*}
$$

$\frac{1}{\tau}=\frac{1}{\tau_{g}}+\frac{1}{\tau_{l}}$

$$
\begin{equation*}
J_{i}\left(\omega_{I}\right)=\left(\frac{S^{2} \tau_{g}}{1+i^{2} \omega_{I}^{2} \tau_{g}^{2}}+\frac{\left(1-S^{2}\right) \tau}{1+i^{2} \omega_{I}^{2} \tau^{2}}\right) i=1,2 \tag{A24}
\end{equation*}
$$

The rotational correlation time, τ_{RH} is assumed to have simple exponential temperature dependence with an E_{R} activation energy as given in Equation (A25).

$$
\begin{equation*}
\tau_{R O}=\tau_{R O}^{298} \exp \left[\frac{E_{R}}{R}\left(\frac{1}{T}-\frac{1}{298.15}\right)\right] \tag{A25}
\end{equation*}
$$

The outer-sphere contribution can be described by Equations (A26 and A27) where N_{A} is the Avogadro constant, and $J_{o s}$ is its associated spectral density function as given by Equation (A15). [10, 11]

$$
\begin{equation*}
\mathrm{r}_{\mathrm{los}}=\frac{32 \mathrm{~N}_{\mathrm{A}} \pi}{405}\left(\frac{\mu_{0}}{4 \pi}\right)^{2} \frac{\hbar^{2} \gamma_{\mathrm{s}}^{2} \gamma_{\mathrm{I}}^{2}}{\mathrm{a}_{\mathrm{GdH}} \mathrm{D}_{\mathrm{GdH}}} \mathrm{~S}(\mathrm{~S}+1)\left[3 \mathrm{~J}_{\mathrm{os}}\left(\omega_{\mathrm{I}}, \mathrm{~T}_{\mathrm{le}}\right)+7 \mathrm{~J}_{\mathrm{os}}\left(\omega_{\mathrm{S}}, \mathrm{~T}_{2 \mathrm{e}}\right)\right] \tag{A26}
\end{equation*}
$$

$$
\mathrm{J}_{\mathrm{os}}\left(\omega, \mathrm{~T}_{\mathrm{je}}\right)=\operatorname{Re}\left[\frac{1+14\left(\mathrm{i} \omega \tau_{\mathrm{GAH}}+\frac{\tau_{\mathrm{GAH}}}{\mathrm{~T}_{\mathrm{je}}}\right)^{1 / 2}}{1+\left(\mathrm{i} \omega \tau_{\mathrm{GdH}}+\frac{\tau_{\mathrm{GdH}}}{\mathrm{~T}_{\mathrm{je}}}\right)^{1 / 2}+49\left(\mathrm{i} \omega \tau_{\mathrm{GAH}}+\frac{\tau_{\mathrm{GAH}}}{\mathrm{~T}_{\mathrm{je}}}\right)+19\left(\mathrm{i} \omega \tau_{\mathrm{GdH}}+\frac{\tau_{\mathrm{GAH}}}{\mathrm{~T}_{\mathrm{je}}}\right)^{3 / 2}}\right]
$$

$$
j=1,2
$$

The longitudinal and transverse electronic relaxation rates, $1 / T_{l e}$ and $1 / T_{2 e}$ are expressed by Equation (A28 and A29), where τ_{v} is the electronic correlation time for the modulation of the zero-field-splitting interaction, E_{v} the corresponding activation energy and Δ^{2} is the mean square zero-field-splitting energy. We assumed a simple exponential dependence of τ_{v} versus $1 / T$ as written in Equation (A30).

$$
\begin{align*}
& \left(\frac{1}{T_{l e}}\right)^{Z F S}=\frac{1}{25} \Delta^{2} \tau_{v}\{4 S(S+1)-3\}\left(\frac{1}{1+\omega_{S}^{2} \tau_{v}^{2}}+\frac{4}{1+4 \omega_{S}^{2} \tau_{v}^{2}}\right) \tag{A28}\\
& \left(\frac{1}{T_{2 e}}\right)^{Z F S}=\Delta^{2} \tau_{v}\left(\frac{5.26}{1+0.372 \omega_{S}^{2} \tau_{v}^{2}}+\frac{7.18}{1+1.24 \omega_{S} \tau_{v}}\right) \tag{A29}\\
& \tau_{v}=\tau_{v}^{298} \exp \left[\frac{E_{v}}{R}\left(\frac{1}{T}-\frac{1}{298.15}\right)\right] \tag{A30}
\end{align*}
$$

The diffusion coefficient for the diffusion of a water proton away from a Gd^{3+} complex, $D_{G d H}$, is assumed to obey an exponential law versus the inverse of the temperature, with activation energy $E_{D G d H}$, as given in Equation (A31). $D_{G d H}^{298}$ is the diffusion coefficient at 298.15 K .
$D_{G d H}=D_{G d H}^{298} \exp \left\{\frac{E_{G d H}}{R}\left(\frac{1}{298.15}-\frac{1}{T}\right)\right\}$

References:

1. C. Wang, S. D. Wettig, M. Foldvari, R. E. Verrall, Langmuir, 2007, 23, 8995.
2. P. Carpena, J. Aguiar, P. Bernaola-Galván, C. Carnero Ruiz, Langmuir,2002, 18, 6054.
3. Swift TJ, Connick RE,J Chem Phys, 1962,37, 307.
4. Zimmerman JR, Brittin WE, J PhysChem,1957,61, 1328.
5. Micskei K, Helm L, Brucher E, Merbach AE, Inorg Chem,1993,32, 3844.
6. Brittain HG, DesreuxJF, Inorg Chem, 1984, 23, 4459.
7. Gonzalez G, Powell DH, Tissieres V, Merbach AE, J Phys Chem,1994, 98, 53.
8. Luz Z, Meiboom S, J Chem Phys, 1964,40, 2686.
9. Dunand FA, Tóth E, Hollister R, Merbach AE, J Biol Inorg Chem, 2001,6, 247.
10. Freed JH, J Chem Phys, 1978, 68, 4034.
11. Koenig SH, Brown RD, Spiller M, et al, Biophys J, 1992, 61,776.
