Supplementary Information

Ln[DO3A-N-\alpha-(pyrenebutanamido)propionate] complexes: optimized relaxivity and NIR optical properties

M.F. Ferreira^{*a*}, G. Pereira^{*a*}, A.F. Martins^{*b,c*}, C. Martins^{*b*}, M.I.M. Prata^{*d*}, S. Petoud^{*c*}, E. Toth^{*c*}, P.M.T. Ferreira^{*a*}, J.A. Martins^{*a,e**} C.F.G.C. Geraldes^{*b*}

^{*a*}Centro de Química, Campus de Gualtar, Universidade do Minho, 4710-057 Braga, Portugal; ^{*e*} Currently in sabatical leave at Dep. of Chemistry University of Bath, UK

^bDepartment of Life Sciences, Faculty of Science and Technology, Centre of Neurosciences and Cell Biology, and Coimbra Chemistry Centre, University of Coimbra, 3001-401 Coimbra, Portugal

^cCentre de Biophysique Moléculaire CNRS, Rue Charles Sadron, 45071 Orléans Cedex 2 France

^dICNAS and IBILI, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal

Figure S1. Size distribution in: a) volume (%); b) intensity (%) for a GdL solution (5.0 mM, pH 7.0, 25 °C) at a concentration well above the *cmc* (0.6 mM).

Figure S2. Temperature dependence of the water proton relaxivity for GdL (20MHz , 1mM, pH 6.0).

Figure S3. pH dependence of the water proton relaxivity for GdL (20 MHz, 1 mM, 25 °C).

Figure S4. Evolution of the relative water proton paramagnetic longitudinal relaxation rate $R_{I_p}(t)/R_{I_p}(0)$ (20 MHz, pH 7.1, 25 °C) for a 1.5 mM solution of GdL in 10 mM phosphate buffer(\circ) and in phosphate buffer containing an equimolar amount of Zn²⁺ (\bullet).

Figure S5. UV-Vis spectra for the free ligand L and for the GdL complex in water $(1.0 \times 10^{-5} \text{ M}, \text{ pH} 7.0, 25 \text{ °C})$.

Figure S6. Fluorescence spectra for free ligand L in non-deoxygenated water (pH 7.0, 25 °C) over the concentration range $5x10^{-5}$ - $5x10^{-3}$ mol.dm⁻³ (λ_{exc} = 345 nm).

Figure S7. Changes in the emission properties of the free ligand L as the ratio of the fluorescence emission intensity for the *excimer* (490 nm) and for the monomer (377 nm) (I_E/I_M) as function of ligand concentration. Line fitted to **equation S1**.

The experimental data in Figure 5 (manuscript) and Figure S6 were fitted (Prima GraphPad) to a sigmoidal model (equation S1).[1,2]

$$\left(\frac{I_{Exc}}{I_{Mono}}\right) = \left(\frac{I_{Exc}}{I_{Mono}}\right)_0 + A_1c + d(A_2 - A_1)\ln(\frac{1 + e^{(c - cmc)/d}}{e^{-cmc/d}})$$

Equation S1

c - complex (GdL)) or free ligand (L) concentration;

 A_1 and A_2 - represent the limits of sigmoidal function that describes the behaviour $d(I_{Exc}/I_{Mono})/dc$ (derivative of I_{Exc}/I_{Mono} in order to c);:

d - is the time constant of the function and is related to the range of concentration over which the abrupt change in I_{Exc}/I_{Mono} occurs;

cmc - is the center of the sigmoidal function.

Table S1. Best fit values for the fitting (Prima GraphPad) of the experimental data of I_{Exc}/I_{Mono} vs [GdL] (Figure 5 in manuscript and Figure S6) to equation S1.

Best-fit values	GdL
$(I_{Exc}/I_{Mono})_0$	-1,764
A ₁	0,3660
d	0,007795
A ₂	3,119
стс	0,6454
Std. Error	
$(I_{Exc}/I_{Mono})_0$	0,007529
A ₁	0,06346
d	71873
A ₂	0,002088
стс	0,01454

The E titration data (Figure 7 in manuscript) were fitted to equation S2 with n, number of equivalent binding sites, fixed to 1.

$$R_{1}^{pobs} = 10^{3} \times \begin{cases} \left(r_{1}^{f}.c_{1}\right) + \frac{1}{2}\left(r_{1}^{o} - r_{1}^{f}\right) \times \\ \left(n.c_{HSA} + c_{1} + K_{A}^{-1} - \sqrt{\left(n.c_{HSA} + c_{1} + K_{A}^{-1}\right)^{2} - 4.n.c_{HSA}.C_{1}} \right) \end{cases}$$

Equation S2

n - number of equivalent binding sites, fixed to 1 in the fitting.

 r_I^f - relaxivity of the free GdL form, non-complexed with HSA r_I^c - relaxivity of the GdL form bound to HSA

 c_1 - analytical concentration of GdL

 c_{HSA} - analytical concentration of HSA

 K_A - association constant GdL/HSA

Table S	2. Biodistributio	n, stated as percentag	ge of injected dos	e per gram of org	an (%ID/g \pm SD), of
¹⁵³ SmL i	n Wistar rats at	1 and 24 hours after	i.v. injection. Resu	lts are the mean of	f 4 animals.

	1 hour	24 hours	
Organ	%ID+SD	%ID+SD	
Blood	0.3071±0.0290	$0.0015 \pm 6.5 \times 10^{-5}$	
Liver	0.2095 ± 0.0617	0.4701±0.1216	
Spleen	0.1784 ± 0.0581	0.3012±0.1646	
Kidney	0.0629 ± 0.0105	0.0242 ± 0.0026	
Heart	0.0385 ± 0.0224	0.0044 ± 0.0014	
Lung	0.1084 ± 0.0220	0.0274 ± 0.0104	
S. Intest.	0.0352 ± 0.0190	0.0066 ± 0.0011	
L. Intest.	0.0125 ± 0.0015	0.0035 ± 0.0029	
Bone	0.0365 ± 0.0078	0.0411 ± 0.0057	
Muscle	0.0095 ± 0.0048	0.011 ± 0.00010	
Brain + Cerebellum	0.0213±0.0134	$0.0007 \pm 8.15 \mathrm{x10}^{-5}$	

APPENDIX 1: Analysis of NMRD and ¹⁷O NMR data

NMRD and ¹⁷O NMR data have been analysed within the framework of Solomon-Bloembergen-Morgan theory.

¹⁷O NMR spectroscopy

From the measured ¹⁷O NMR relaxation rates and angular frequencies of the paramagnetic solutions, $1/T_1$, $1/T_2$ and ω , and of the acidified water reference, $1/T_{1A}$, $1/T_{2A}$ and ω_A , one can calculate the reduced relaxation rates and chemical shifts, $1/T_{2r}$ and $\Delta \omega_r$, which may be written as in Equations (A1)-(A3), where, $1/T_{1m}$, $1/T_{2m}$ is the relaxation rate of the bound water and $\Delta \omega_m$ is the chemical shift difference between bound and bulk water, τ_m is the mean residence timeor the inverse of the water exchange rate k_{ex} and P_m is the mole fraction of the bound water. [3, 4]

$$\frac{1}{T_{Ir}} = \frac{1}{P_m} \left[\frac{1}{T_1} - \frac{1}{T_{IA}} \right] = \frac{1}{T_{1m} + \tau_m} + \frac{1}{T_{1os}}$$
(A1)

$$\frac{1}{T_{2r}} = \frac{1}{P_m} \left[\frac{1}{T_2} - \frac{1}{T_{2A}} \right] = \frac{1}{\tau_m} \frac{T_{2m}^{-2} + \tau_m^{-1} T_{2m}^{-1} + \Delta \omega_m^2}{(\tau_m^{-1} + T_{2m}^{-1})^2 + \Delta \omega_m^2} + \frac{1}{T_{2os}}$$
(A2)

$$\Delta \omega_r = \frac{1}{P_m} (\omega - \omega_A) = \frac{\Delta \omega_m}{(1 + \tau_m T_{2m}^{-1})^2 + \tau_m^2 \Delta \omega_m^2} + \Delta \omega_{os}$$
(A3)

The outer sphere contributions to the ¹⁷O relaxation rates $1/T_{1OS}$ and $1/T_{2OS}$ can are neglected according to previous studies.[5] Therefore, Equations (A1-A2) can be further

simplified into Equations (A4) and (A5):

$$\frac{1}{T_{1r}} = \frac{1}{T_{1m} + \tau_m}$$
(A4)

$$\frac{1}{T_{2r}} = \frac{1}{T_{2m} + \tau_m}$$
(A5)

The exchange rate is supposed to obey the Eyring equation. In equation (A6) ΔS^{\ddagger} and ΔH^{\ddagger} are the entropy and enthalpy of activation for the water exchange process, and k_{ex}^{298} is the exchange rate at 298.15 K.

$$\frac{1}{\tau_m} = k_{ex} = \frac{k_B T}{h} \exp\left\{\frac{\Delta S^{\ddagger}}{R} - \frac{\Delta H^{\ddagger}}{RT}\right\} = \frac{k_{ex}^{298} T}{298.15} \exp\left\{\frac{\Delta H^{\ddagger}}{R} \left(\frac{1}{298.15} - \frac{1}{T}\right)\right\}$$
(A6)

In the transverse relaxation, the scalar contribution, $1/T_{2sc}$, is the most important [Equation (A7)]. $1/\tau_{s1}$ is the sum of the exchange rate constant and the electron spin relaxation rate [Equation (A8)].

$$\frac{1}{T_{\rm 2m}} \approx \frac{1}{T_{\rm 2sc}} = \frac{S(S+1)}{3} \left(\frac{A}{\hbar}\right)^2 \left(\tau_{s1} + \frac{\tau_{s2}}{1 + \omega_s^2 \tau_{s2}^2}\right)$$
(A7)

$$\frac{1}{\tau_{s1}} = \frac{1}{\tau_m} + \frac{1}{T_{1e}}$$
(A8)

The ¹⁷O longitudinal relaxation rates in Gd^{3+} solutions are the sum of the contributions of the dipole-dipole (*dd*) and quadrupolar (*q*) mechanisms as expressed by Equations

(A11-A13) for non-extreme narrowing conditions, where γ_{s} is the electron and γ_{I} is the nuclear gyromagnetic ratio (γ_{s} = 1.76×10¹¹ rad s⁻¹ T⁻¹, γ_{I} =-3.626×10⁷ rad s⁻¹ T⁻¹), r_{GdO} is the effective distance between the electron charge and the ¹⁷O nucleus, *I* is the nuclear spin (5/2 for ¹⁷O), χ is the quadrupolar coupling constant and η is an asymmetry parameter :

$$\frac{1}{T_{lm}} = \frac{1}{T_{ldd}} + \frac{1}{T_{lq}}$$
(A9)

with:

$$\frac{1}{T_{1dd}} = \frac{2}{15} \left(\frac{\mu_0}{4\pi}\right)^2 \frac{\hbar^2 \gamma_I^2 \gamma_S^2}{r_{GdO}^6} S(S+1) \times \left[3J(\omega_I;\tau_{d1}) + 7J(\omega_S;\tau_{d2})\right]$$
(A10)

$$\frac{1}{T_{1q}} = \frac{3\pi^2}{10} \frac{2I+3}{I^2(2I-1)} \chi^2 (1+\eta^2/3) \times \left[0.2J_1(\omega_I) + 0.8J_2(\omega_I)\right]$$
(A11)

In Equation (A3) the chemical shift of the bound water molecule, $\Delta \omega_m$, depends on the hyperfine interaction between the Gd³⁺ electron spin and the ¹⁷O nucleus and is directly proportional to the scalar coupling constant, $\frac{A}{\hbar}$, as expressed in Equation (A12).[6]

$$\Delta \omega_m = \frac{g_L \mu_B S(S+1)B}{3k_B T} \frac{A}{\hbar}$$
(A12)

The isotopic Landé g factor is equal to 2.0 for the Gd^{3+} , *B* represents the magnetic field, and k_B is the Boltzmann constant.

The outer-sphere contribution to the chemical shift is assumed to be linearly related to $\Delta \omega_m$ by a constant C_{os} [Equation (A13)]. [7]

$$\Delta \omega_{os} = C_{os} \Delta \omega_m \tag{A13}$$

NMRD

The measured longitudinal proton relaxation rate, $R_1^{obs} = 1/T_1^{obs}$, is the sum of a paramagnetic and a diamagnetic contribution as expressed in Equation (A14), where r_1 is the proton relaxivity:

$$R_1^{obs} = R_1^d + R_1^p = R_1^d + r_1 [Gd^{3+}]$$
(A14)

The relaxivity can be divided into an inner and an outer sphere term as follows:

$$r_1 = r_{1is} + r_{1os} \tag{A15}$$

The inner sphere term is given in Equation (A16), where q is the number of inner sphere

water molecules. [8]

$$r_{lis} = \frac{1}{1000} \times \frac{q}{55.55} \times \frac{1}{T_{lm}^{H} + \tau_m}$$
(A16)

The longitudinal relaxation rate of inner sphere protons, $1/T_{Im}^{H}$ is expressed by Equation (A11), where r_{GdH} is the effective distance between the electron charge and the ¹H nucleus, ω_{I} is the proton resonance frequency and ω_{S} is the Larmor frequency of the Gd³⁺ electron spin.

$$\frac{1}{T_{1m}^{H}} = \frac{2}{15} \left(\frac{\mu_{0}}{4\pi}\right)^{2} \frac{\hbar^{2} \gamma_{I}^{2} \gamma_{S}^{2}}{r_{GdH}^{6}} S(S+1) \times \left[3J(\omega_{I};\tau_{d1}) + 7J(\omega_{S};\tau_{d2})\right]$$
(A17)

$$\frac{1}{\tau_{di}} = \frac{1}{\tau_m} + \frac{1}{\tau_{RH}} + \frac{1}{T_{ie}} \qquad \text{for } i = 1,2 \tag{A18}$$

where τ_{RH} is the rotational correlation time of the Gd-H $_{water}$ vector.

For small molecular weight chelates (fast rotation), the spectral density function is expressed as in Equation (A19).

$$J(\omega;\tau) = \left(\frac{\tau}{1+\omega^2\tau^2}\right)$$
(A19)

For slowly rotating species, the spectral density functions are described the Lipari-Szabo approach.[9] In this model we distinguish two statistically independent motions; a rapid local motion with a correlation time τ_l and a slower global motion with a correlation time τ_g . Supposing the global molecular reorientation is isotropic, the relevant spectral density functions are expressed as in Equations (A20-A24), where the general order parameter S^2 describes the degree of spatial restriction of the local motion. If the local motion is isotropic, $S^2 = 0$; if the rotational dynamics is only governed by the global motion, $S^2 = 1$.

$$J(\omega_{I};\tau_{d1}) = \left(\frac{S^{2}\tau_{d1g}}{1+\omega_{I}^{2}\tau_{d1g}^{2}} + \frac{(1-S^{2})\tau_{d1}}{1+\omega_{I}^{2}\tau_{d1}^{2}}\right)$$
(A20)

$$J(\omega_{S};\tau_{d2}) = \left(\frac{S^{2}\tau_{d2g}}{1+\omega_{S}^{2}\tau_{d2g}^{2}} + \frac{(1-S^{2})\tau_{d2}}{1+\omega_{S}^{2}\tau_{d2}^{2}}\right)$$
(A21)

$$\frac{1}{\tau_{dig}} = \frac{1}{\tau_m} + \frac{1}{\tau_g} + \frac{1}{T_{ie}}i = 1, 2$$
(A22)

$$\frac{1}{\tau} = \frac{1}{\tau_g} + \frac{1}{\tau_l}$$
(A23)

$$J_{i}(\omega_{I}) = \left(\frac{S^{2}\tau_{g}}{1 + i^{2}\omega_{I}^{2}\tau_{g}^{2}} + \frac{(1 - S^{2})\tau}{1 + i^{2}\omega_{I}^{2}\tau^{2}}\right)i = 1, 2$$
(A24)

The rotational correlation time, τ_{RH} is assumed to have simple exponential temperature dependence with an E_R activation energy as given in Equation (A25).

$$\tau_{RO} = \tau_{RO}^{298} \exp\left[\frac{E_R}{R} \left(\frac{1}{T} - \frac{1}{298.15}\right)\right]$$
(A25)

The outer-sphere contribution can be described by Equations (A26 and A27) where N_A is the Avogadro constant, and J_{os} is its associated spectral density function as given by Equation (A15). [10, 11]

$$r_{los} = \frac{32 N_A \pi}{405} \left(\frac{\mu_0}{4\pi}\right)^2 \frac{\hbar^2 \gamma_s^2 \gamma_l^2}{a_{GdH} D_{GdH}} S(S+1) [3 J_{os}(\omega_1, T_{le}) + 7 J_{os}(\omega_S, T_{2e})]$$
(A26)

$$J_{os}(\omega, T_{je}) = Re \left[\frac{1 + 14 \left(i\omega \tau_{GdH} + \frac{\tau_{GdH}}{T_{je}} \right)^{1/2}}{1 + \left(i\omega \tau_{GdH} + \frac{\tau_{GdH}}{T_{je}} \right)^{1/2} + 49 \left(i\omega \tau_{GdH} + \frac{\tau_{GdH}}{T_{je}} \right) + 19 \left(i\omega \tau_{GdH} + \frac{\tau_{GdH}}{T_{je}} \right)^{3/2}} \right]$$
(A27)
j = 1,2

The longitudinal and transverse electronic relaxation rates, $1/T_{1e}$ and $1/T_{2e}$ are expressed by Equation (A28 and A29), where τ_v is the electronic correlation time for the modulation of the zero-field-splitting interaction, E_v the corresponding activation energy and Δ^2 is the mean square zero-field-splitting energy. We assumed a simple exponential dependence of τ_v versus 1/T as written in Equation (A30).

$$\left(\frac{1}{T_{le}}\right)^{ZFS} = \frac{1}{25} \Delta^2 \tau_v \left\{ 4S(S+1) - 3 \right\} \left(\frac{1}{1 + \omega_s^2 \tau_v^2} + \frac{4}{1 + 4\omega_s^2 \tau_v^2}\right)$$
(A28)

$$\left(\frac{1}{T_{2e}}\right)^{2FS} = \Delta^2 \tau_{\nu} \left(\frac{5.26}{1 + 0.372\omega_s^2 \tau_{\nu}^2} + \frac{7.18}{1 + 1.24\omega_s \tau_{\nu}}\right)$$
(A29)

$$\tau_{v} = \tau_{v}^{298} exp\left[\frac{E_{v}}{R}\left(\frac{1}{T} - \frac{1}{298.15}\right)\right]$$
(A30)

The diffusion coefficient for the diffusion of a water proton away from a Gd³⁺ complex, D_{GdH} , is assumed to obey an exponential law versus the inverse of the temperature, with activation energy E_{DGdH} , as given in Equation (A31). D_{GdH}^{298} is the diffusion coefficient at 298.15K.

$$D_{GdH} = D_{GdH}^{298} exp\left\{\frac{E_{GdH}}{R} \left(\frac{1}{298.15} - \frac{1}{T}\right)\right\}$$
(A31)

References:

- 1. C. Wang, S. D. Wettig, M. Foldvari, R. E. Verrall, Langmuir, 2007, 23, 8995.
- P. Carpena, J. Aguiar, P. Bernaola-Galván, C. Carnero Ruiz, *Langmuir*,2002, 18, 6054.
- 3. Swift TJ, Connick RE, J Chem Phys, 1962, 37, 307.
- 4. Zimmerman JR, Brittin WE, J PhysChem, 1957, 61, 1328.
- 5. Micskei K, Helm L, Brucher E, Merbach AE, Inorg Chem, 1993, 32, 3844.
- 6. Brittain HG, DesreuxJF, Inorg Chem, 1984, 23, 4459.
- 7. Gonzalez G, Powell DH, Tissieres V, Merbach AE, J Phys Chem, 1994, 98, 53.
- 8. Luz Z, Meiboom S, J Chem Phys, 1964,40, 2686.
- 9. Dunand FA, Tóth E, Hollister R, Merbach AE, J Biol Inorg Chem, 2001,6, 247.
- 10. Freed JH, J Chem Phys, 1978, 68, 4034.
- 11. Koenig SH, Brown RD, Spiller M, et al, Biophys J, 1992, 61,776.