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 z-average 

(r. nm) 

Radius (nm) 

(% volume) 

Radius (nm) 

(% intensity) 

GdL 

(5 mM, pH 7.0, 25 ºC) 

48.9 1.57 (100%) 73.1 (61.9%) 

1.74 (38.1%) 

 

Figure S1. Size distribution in: a) volume (%); b) intensity (%) for a GdL solution (5.0 mM, pH 7.0, 

25 ºC) at a concentration well above the cmc (0.6 mM). 

 

 

 

 Figure S2. Temperature dependence of the water proton relaxivity for GdL (20MHz , 1mM, pH 6.0).  
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Figure S3. pH dependence of the water proton relaxivity for GdL (20 MHz, 1 mM, 25 ºC).  

 

 

 
 

Figure S4. Evolution of the relative water proton paramagnetic longitudinal relaxation rate 

R1p(t)/R1p(0) (20 MHz, pH 7.1, 25 ºC) for a 1.5 mM solution of GdL in 10 mM phosphate buffer(○) 

and in phosphate buffer containing an equimolar amount of Zn
2+

 (●). 
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Figure S5. UV-Vis spectra for the free ligand L and for the GdL complex in water (1.0x10
-5 

M, pH 

7.0, 25 ºC). 

 

 
 

 
 

 

Figure S6. Fluorescence spectra for free ligand L in non-deoxygenated water (pH 7.0, 25 ºC) over the 

concentration range 5x10
-5 

- 5x10
-3

 mol.dm
-3

 (exc= 345 nm). 
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Figure S7. Changes in the emission properties of the free ligand L as the ratio of the fluorescence 

emission intensity for the excimer (490 nm) and for the monomer (377 nm) (IE/IM) as function of 

ligand concentration. Line fitted to equation S1.  
 

 
The experimental data in Figure 5 (manuscript) and Figure S6 were fitted (Prima GraphPad) 

to a sigmoidal model (equation S1).[1,2]
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Equation S1 

 

 

 

c - complex (GdL)) or free ligand (L)  concentration; 

A1 and A2 - represent the limits of sigmoidal function that describes the behaviourof d(IExc/IMono)/dc 

(derivative of IExc/IMono in order to c);: 

d - is the time constant of the function and is related to the range of concentration over which the 

abrupt change in IExc/IMono occurs; 

cmc - is the center of the sigmoidal function. 

 

 

Table S1. Best fit values for the fitting (Prima GraphPad) of the experimental data of IExc/IMono vs 

[GdL] (Figure 5 in manuscript and Figure S6) to equation S1.  

 

Best-fit values GdL 

(IExc/IMono)0 -1,764 

A1 0,3660 

d 0,007795 

A2 3,119 

cmc 0,6454 

Std. Error  

(IExc/IMono)0 0,007529 

A1 0,06346 

d 71873 

A2 0,002088 

cmc 0,01454 
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The E titration data (Figure 7 in manuscript) were fitted to equation S2 with n, number of equivalent 

binding sites, fixed to 1.   

 

 
Equation S2 

 

 

n - number of equivalent binding sites, fixed to 1 in the fitting. 

r1
f  

- relaxivity of the free GdL form, non-complexed with HSA 

r1
c 
- relaxivity of the GdL form bound to HSA 

c1 - analytical concentration of GdL 

cHSA - analytical concentration of HSA 

KA -  association constant GdL/HSA 

 

 

 

Table S2. Biodistribution, stated as percentage of injected dose per gram of organ (%ID/g ±SD), of 
153

SmL in Wistar rats at  1 and 24 hours after i.v. injection. Results are the mean of 4 animals. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Organ 

1 hour 

%ID+SD 

24 hours 

%ID+SD 

Blood 

Liver 

Spleen 

Kidney 

Heart 

Lung 

S. Intest. 

L. Intest. 

Bone 

Muscle 

Brain + Cerebellum 

0.3071±0.0290 

0.2095±0.0617 

0.1784±0.0581 

0.0629±0.0105 

0.0385±0.0224 

0.1084±0.0220 

0.0352±0.0190 

0.0125±0.0015 

0.0365±0.0078 

0.0095±0.0048 

0.0213±0.0134 

0.0015±6.5x10
-5

 

0.4701±0.1216 

0.3012±0.1646 

0.0242±0.0026 

0.0044±0.0014 

0.0274±0.0104 

0.0066±0.0011 

0.0035±0.0029 

0.0411±0.0057 

0.011±0.00010 

0.0007±8.15x10
-5
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APPENDIX 1: Analysis of NMRD and 
17

O NMR data 

NMRD and 
17

O NMR data have been analysed within the framework of Solomon-

Bloembergen-Morgan theory.  

17
O NMR spectroscopy 

From the measured 
17

O NMR relaxation rates and angular frequencies of the 

paramagnetic solutions, 1/T1 , 1/T2 and , and of the acidified water reference, 1/T1A, 

1/T2Aand , one can calculate the reduced relaxation rates and chemical shifts, 1/T2rand 

r, which may be written as in Equations (A1)-(A3), where, 1/T1m, 1/T2m is the 

relaxation rate of the bound water and m is the chemical shift difference between 

bound and bulk water, m is the mean residence timeor the inverse of the water exchange 

rate kexandPm is the mole fraction of the bound water. [3, 4]
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The outer sphere contributions to the 
17

O relaxation rates 1/T1OS and 1/T2OS can are 

neglected according to previous studies.[5] Therefore, Equations (A1-A2) can be further 
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simplified into Equations (A4) and (A5):  

mmr  τ T
  

T 


11

11
            (A4) 

mmr  τ T
  

T 


22

11
            (A5) 

The exchange rate is supposed to obey the Eyring equation. In equation (A6) 

S
‡
andH

‡
 are the entropy and enthalpy of activation for the water exchange process, 

and kex
298

 is the exchange rate at 298.15 K. 




























T.R

ΔH

.

Tk
=

RT

ΔH

R

ΔS

h

Tk
==k

τ

‡
ex

‡‡

B
ex

m

1

15298

1
exp

15298
exp

1
298

       (A6) 

In the transverse relaxation, the scalar contribution, 1/T2sc, is the most important 

[Equation (A7)]. 1/s1 is the sum of the exchange rate constant and the electron spin 

relaxation rate [Equation (A8)].  

2

2
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The 
17

O longitudinal relaxation rates in Gd
3+

 solutions are the sum of the contributions 

of the dipole-dipole (dd) and quadrupolar (q) mechanisms as expressed by Equations 
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(A11-A13) for non-extreme narrowing conditions, where γSis the electron and γIis the 

nuclear gyromagnetic ratio (γS= 1.7610
11

 rad s
-1

 T
-1

, γI=-3.62610
7
 rad s

-1 
T

-1
), rGdO is 

the effective distance between the electron charge and the 
17

O nucleus, I is the nuclear 

spin (5/2 for 
17

O),  is the quadrupolar coupling constant and is an asymmetry 

parameter : 

 
T

1
  

T

1
 

T 1q1dd1m
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            (A9) 
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(A11) 

In Equation (A3) the chemical shift of the bound water molecule, m, depends on the 

hyperfine interaction between the Gd
3+

 electron spin and the 
17

O nucleus and is directly 

proportional to the scalar coupling constant, 


A
, as expressed in Equation (A12).[6]
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A

Tk

)BS(S+μg
=Δω

B

BL
m

3

1
          (A12) 

The isotopic Landé g factor is equal to 2.0 for the Gd
3+

, B represents the magnetic field, 

and kB is the Boltzmann constant. 

The outer-sphere contribution to the chemical shift is assumed to be linearly related to 

Δωm  by a constant Cos [Equation (A13)]. [7] 

mosos Δω=CΔω  
         (A13) 

 

NMRD 

The measured longitudinal proton relaxation rate, R1
obs

= 1/T1
obs

, is the sum of a 

paramagnetic and a diamagnetic contribution as expressed in Equation (A14), where r1 

is the proton relaxivity: 

][+R=R+R=R +dpdobs 3

11111 Gdr           (A14) 

The relaxivity can be divided into an inner and an outer sphere term as follows: 

1os1is1 r+r=r           (A15) 

The inner sphere term is given in Equation (A16), where q is the number of inner sphere 
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water molecules. [8]
 

m

H

1m

1is
+τT

1

55.55

q

1000

1
=r            (A16) 

The longitudinal relaxation rate of inner sphere protons, 1/T1m
H
 is expressed by 

Equation (A11), where rGdH is the effective distance between the electron charge and the 

1
H nucleus, I is the proton resonance frequency and S is the Larmor frequency of the 

Gd
3+

 electron spin. 
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          (A17) 

1 1 1 1

di m RH ieT  
                   for 1,2=i           (A18) 

whereRH is the rotational correlation time of the Gd-Hwater vector. 
 

For small molecular weight chelates (fast rotation), the spectral density function is 

expressed as in Equation (A19). 

 

















22τω1

τ
ω;τJ  

(A19)  

 

For slowly rotating species, the spectral density functions are described the Lipari-

Szabo approach.[9] In this model we distinguish two statistically independent motions; 
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a rapid local motion with a correlation time land a slower global motion with a 

correlation time g. Supposing the global molecular reorientation is isotropic, the 

relevant spectral density functions are expressed as in Equations (A20-A24), where the 

general order parameter S
2
 describes the degree of spatial restriction of the local motion. 

If the local motion is isotropic, S
2
 = 0; if the rotational dynamics is only governed by 

the global motion, S
2
 = 1. 
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The rotational correlation time, RH is assumed to have simple exponential temperature 

dependence with an ER activation energy as given in Equation (A25). 
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The outer-sphere contribution can be described by Equations (A26 and A27) where NA 

is the Avogadro constant, and Jos is its associated spectral density function as given by 

Equation (A15). [10, 11]
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(A27) 

 

 

The longitudinal and transverse electronic relaxation rates, 1/T1e and 1/T2e are expressed 

by Equation (A28 and A29), where v is the electronic correlation time for the 

modulation of the zero-field-splitting interaction, Ev the corresponding activation energy 

and 
2
 is the mean square zero-field-splitting energy. We assumed a simple exponential 

dependence of vversus 1/T as written in Equation (A30). 
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The diffusion coefficient for the diffusion of a water proton away from a Gd
3+

 complex, 

DGdH, is assumed to obey an exponential law versus the inverse of the temperature, with 

activation energy EDGdH, as given in Equation (A31). DGdH
298

is the diffusion coefficient 

at 298.15K. 
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