Supporting information for

Pentadienyl chemistry of the heavy alkaline-earth metals revisited

Matthias Reiners, Ann Christin Fecker, Matthias Freytag, Peter G. Jones and Marc D. Walter^{*}

Contribution from the Institut für Anorganische und Analytische Chemie, Technische Universität

Braunschweig, Hagenring 30, 38106 Braunschweig (Germany)

E-mail: <u>mwalter@tu-bs.de</u>

Table of Content:

1.	Experimental Details	S	2
2.	Crystallographic Details	S	7
3.	References	S	8

1. Experimental Details

General considerations. All synthetic and spectroscopic manipulations were carried out under an atmosphere of purified nitrogen, either in a Schlenk apparatus or in a glovebox. Solvents were dried and deoxygenated either by distillation under a nitrogen atmosphere from sodium benzophenone ketyl (THF) or by an MBraun GmbH solvent purification system (all other solvents). NMR data were recorded on a Bruker DPX 200, Bruker DRX 400, a Bruker Avance III 400 or a Bruker Avance II 300 spectrometer at ambient temperature unless stated otherwise. The residual solvent signal was used as a chemical shift reference ($\delta_{\rm H}$ 7.16 for benzene, 7.26 for chloroform, 3.58 ppm for α -*H* of THF) for the ¹H spectra and the solvent signal ($\delta_{\rm C}$ 128.06 for benzene, 77.17 for chloroform, 67.21 ppm for α -*C* of THF) for the ¹³C spectra. Elemental analyses were performed by combustion and gas chromatographic analysis with an Elementar varioMICRO instrument. Despite several attempts, the carbon values for complexes **1-3** were lower than expected because of incomplete combustion and the extreme air-sensitivity of these compounds. Nevertheless, low carbon values were also observed in alkylcyclopentadienyl complexes of the heavy alkaline-earth metals, e.g. ref. 1, ref. 2 and literature cited therein, and ref. 3.

Ligand synthesis.

Potassium (2,4-di(*tert*-butyl)pentadienide, $K[2,4-(Me_3C)_2C_5H_5]$ (**KPdl'**)⁴ was prepared according to a slightly modified literature procedure as detailed below.

water (80 mL) and dried over MgSO₄. The solvent was removed under dynamic vacuum and the ketone **A** was purified by distillation (68-74 °C/0.4 mbar) and obtained as colourless liquid. Yield: 19.4 g (108 mmol, 54%). ¹H NMR (200 MHz, CDCl₃, 298 K): δ 6.33 (q, 1H, CH, ⁴J_{HH} = 1.2 Hz), 2.01 (d, 3H, CH₃, ⁴J_{HH} = 1.2 Hz), 1.09 (s, 9H, CMe₃), 1.07 (s, 9H, CMe₃) ppm.

Preparation of 2,2,3,6,6,-heptamethylhept-4-en-3-ol (B). Magnesium (3.29 g, 135 mmol, 1.20 equiv.) and Et₂O (150 mL) was added to a 500 mL flask equipped with an additional funnel, nitrogen inlet, reflux condenser and a magnetic stirring bar. Methyl iodide (19.2 g, 135 mmol, 1.20 equiv) was diluted in Et₂O (60 mL), transferred into the dropping funnel and the Grignard reaction was started by the addition of 5 mL of the MeI/Et₂O mixture. The remaining MeI/Et₂O solution was then slowly added to keep the reaction mixture at reflux. After complete addition the reaction mixture was heated at reflux for additional 2 h and then stirred for 5 h at ambient temperature. Remaining Mg metal was removed by filtration, ketone **A** (19.4 g, 107 mmol, 1.00 equiv) was slowly added at 0 °C and the resulting suspension was stirred for 12 h at ambient temperature. The colourless suspension was carefully hydrolysed with water (5 mL), neutralized with saturated aqueous Na₂CO₃ solution (30 mL) and then washed with saturated aqueous NaCl-solution (30 mL). The aqueous phase was extracted with Et₂O (3 x 30 mL) and the organic extracts were combined and dried over MgSO₄. The solvent was removed at a rotary evaporator to give the crude product in 95% yield (20.0 g, 101 mmol). ¹H NMR (200 MHz, CDCl₃, 298 K): δ 5.41 (q, 1H, CH, ⁴J_{HH} = 1.2 Hz), 1.87 (d, 3H, CH₃, ⁴J_{HH} = 1.2 Hz), 1.27 (s, 3H, CH₃), 0.97 (s, 9H, CMe₃), 1.02 (s, 9H, CMe₃) (the OH proton was not observed) ppm.

Preparation of 2,2,3,6,6,-heptamethylhept-5-methylene-hept-3-ene (C). Iodine (50 mg) was added to **B** (20.0 g, 101 mmol) and the mixture was heated under reflux for 1 h. The reaction mixture was allowed to cool to room temperature and then fractionally distilled over a Vigreaux column (15 cm) (94 °C/1 mbar). In contrast to the original work-up procedure,⁴ the final purification was accomplished by column chromatography (silica flash gel, pentane, $R_f = 0.96$) to give product **C** in 78% yield (15.2 g, 84.3 mmol). ¹H NMR (200 MHz, CDCl₃, 298 K): δ 5.87 (br, 1H, CH), 5.01 (d, 1H, CH₂, J = 2.0 Hz), 4.59 (t, 1H, CH₂, J = 2.0 Hz), 1.69 (d, 3H, CH₃, ⁴J = 1.3 Hz), 1.08 (s, 9H, CMe₃), 1.04 (s, 9H, CMe₃) ppm. ¹³C NMR (50 MHz, CDCl₃, 298 K): δ 156.0 (C4), 145.8 (C2), 121.8 (C3), 109.4 (C5), 36.5 (CMe₃), 36.4 (CMe₃), 29.4 (C(CH₃)₃), 29.3 (C(CH₃)₃), 14.2 (C1) ppm.

Preparation of K[2,4-(Me₃C)₂C₃H₃] (KPdl'). To potassium amylate (KO'Pen) (4.20 g, 33.3 mmol) dissolved in hexane (200 mL), 1,3-pentadiene C (6.00 g, 33.3 mmol) was added at -78 °C. *n*-BuLi (22 mL, 35.0 mmol, 1.6 M in hexane) was added slowly at -78 °C and the reaction mixture was allowed to warm to ambient temperature and stirred for 12 h at 40 °C. During this time the colour changed from light yellow to dark red-brown. After filtration the dark brown precipitate was washed extensively with hexanes (5 x 20 mL) and THF (3 x 20 mL) to remove the red-brown colour. The product was dried under dynamic vacuum and isolated as a beige, highly pyrophoric powder. Yield: 4.10 g (18.8 mmol, 56%). **KPdl'** acted as a strong base, and deprotonation of toluene was observed when solid **KPdl'** was washed with toluene. Furthermore, it was essential to wash **KPdl'** extensively until a nearly colourless powder was obtained, since otherwise dramatically reduced yields were obtained in subsequent reactions. ¹H NMR (300 MHz, thf-*d*₈, 298 K): δ 3.73 (t, 2H, *CH*, ⁴*J* = 2.0 Hz), 3.56 (t, 1H, *CH*₂, ⁴*J* = 2.0 Hz), 3.22 (d, 2H, *CH*₂, ⁴*J* = 1.8 Hz), 1.16 (s, 18H, C(*CH*₃)₃ ppm. ¹³C NMR (75 MHz, THF-d₈, 298 K): δ 32.6 (*CH*₃), 78.7 (*CH*), 72.6 (*CH*₂), 78.7 (*CH*), 157.3 (*CCMe*₃) ppm. Anal. calcd. for C₁₃H₂₃K (218.42): C, 71.49; H, 10.61. Found: C, 70.90; H, 10.62.

KPdl' was very poorly soluble in diethyl ether and only slightly soluble in tetrahydrofuran. Single crystals of **1** as its THF-adduct $[(thf)K(\mu-\eta^5:\eta^5-Pdl')]_{\infty}$ were grown from concentrated THF solutions at – 30 °C.

Preparation of [(η⁵-2,4-(Me₃C)₂C₅H₅)₂Ca(thf)] (1). To a solution of CaI₂ (135 mg, 0.46 mmol) in THF (15 mL) was added a slurry of K[2,4-(Me₃C)₂C₅H₅] (200 mg, 0.92 mmol) in THF (10 mL) at room temperature. The resulting yellow solution was stirred for 2 h and a colourless solid was formed. After evaporation of the solvent, the yellow solid residue was extracted with pentane (3 x 5 mL). The filtered extract was concentrated and cooled to -30° C to give pale yellow crystals. Yield: 63 mg (0.13 mmol, 29%). Anal. calcd. for C₃₀H₅₄OCa (470.84): C, 76.53; H, 11.56. Found: C, 74.11; H, 11.26. ¹H NMR (300 MHz, C₆D₆, 298 K): δ 4.65 (t, 1H, CH, ⁴J = 2.3 Hz), 4.27 (d, 2H, CH₂, ⁴J = 2.3 Hz), 3.56 (s, 2H, CH₂), 3.42 (m, 2H, α-H thf), 1.32 (s, 18H, CCH₃), 1.23 (m, 2H, β-H thf) ppm. ¹³C {¹H} NMR (75 MHz, C₆D₆, 298 K): δ 162.7 (CCMe₃), 82.3 (CH), 76.6 (CH₂), 68.4 (thf α-C), 38.8 (CMe₃), 31.7 (CH₃), 25.1 (thf β-C) ppm. When complex **1** was dissolved in thf-*d*₈ the Pdl' resonances broadened and moved up-field, whereas the coordinated thf-resonances experienced a down-field shift. Nevertheless, we were unable to reproduce the previously reported ¹H NMR spectrum of **1**.⁵

Figure S1. ¹H NMR spectrum of $[(\eta^5-2,4-(Me_3C)_2C_5H_5)_2Ca(thf)]$ (1) recorded in C₆D₆ and thf-*d*₈ solvent at ambient temperatures. Resonances marked with * and + correspond to C₄D₇O and trace amounts of HPdl' in the sample, respectively.

Preparation of [(η⁵-2,4-(Me₃C)₂C₅H₅)₂Sr(thf)] (2). A slurry of K[2,4-(Me₃C)₂C₅H₅] (200 mg, 0.92 mmol) in THF (10 mL) was added to a solution of SrI₂ (157 mg, 0.46 mmol) in THF (15 mL). The resulting yellow solution was stirred for 2 h and a colourless solid precipitated. After solvent evaporation the yellow solid residue was extracted with pentane (3 x 5 mL). The filtered extract was concentrated and cooled to -30° C to give pale yellow crystals. Yield: 102 mg (0.20 mmol, 43%). Anal. calcd. for C₃₀H₅₄OSr (518.38): C, 69.51; H, 10.56. Found: C, 66.24; H, 10.21. ¹H NMR (300 MHz, C₆D₆, 298 K): δ 4.63 (t, 1H, CH, ⁴J = 2.3 Hz), 4.26 (d, 2H, CH₂, ⁴J = 2.3 Hz), 3.66 (s, 2H, CH₂), 3.32 (m, 2H, α-H thf), 1.35 (s, 18H, CCH₃), 1.17 (m, 2H, β-H thf) ppm. ¹³C{¹H} NMR (75 MHz, C₆D₆, 298 K): δ 162.3 (CCMe₃), 81.5 (CH), 77.0 (CH₂), 68.7 (thf α-C), 38.5 (CMe₃), 31.9 (CH₃), 25.0 (thf β-C) ppm.

Figure S2. ¹³C{¹H} NMR spectra of complexes 1, 2 and 3 recorded in C_6D_6 solution at ambient temperature.

Preparation of $[(η^5-2,4-(Me_3C)_2C_5H_5)_2Ba(thf)_2]$ (3). To a solution of BaI₂ (179 mg, 0.46 mmol) in THF (15 mL) was added a slurry of K[2,4-(Me₃C)₂C₅H₅] (200 mg, 0.92 mmol) in THF (10 mL) at room temperature. The resulting yellow solution was stirred for 2 h and a colourless solid precipitated. After evaporating the solvent, the yellow solid residue was extracted with pentane (3 x 5 mL). The filtered extract was concentrated and cooled to -30° C to give yellow crystals. Yield: 186 mg (0.29 mmol, 64%). Anal. calcd. for C₃₄H₆₂BaO₂ (640.20): C, 63.79; H, 9.76. Found: C, 62.73; H, 9.71. ¹H NMR (300 MHz, C₆D₆, 298 K): δ 4.59 (t, 1H, CH, ⁴J = 2.3 Hz), 4.26 (d, 2H, CH₂, ⁴J = 2.3 Hz), 3.75 (s, 2H, CH₂), 3.35 (m, 2H, α-H thf), 1.34 (s, 18H, CCH₃), 1.31 (m, 4H, β-H thf) ppm. ¹³C{¹H} NMR (75 MHz, C₆D₆, 298 K): δ 161.6 (*C*CMe₃), 83.4 (*C*H), 79.7 (*C*H₂), 68.5 (thf α-*C*), 38.3 (*C*Me₃), 31.8 (*C*H₃), 25.4 (thf β-*C*) ppm.

2. Crystallographic Details

Single crystals of each compound were examined under inert oil. Data were recorded at 100(2) K on Oxford Diffraction diffractometers using monochromated MoKa or mirror-focused CuKa radiation (Table S1). Absorption corrections were performed on the basis of multi-scans. The structures were refined anisotropically using the SHELXL-97 program.⁶ Hydrogen atoms of the Pdl' ligands were refined freely; methyl groups were refined as idealised rigid groups allowed to rotate but not tip. Other hydrogen atoms were refined using a riding model starting from calculated positions. Special features and exceptions: Complex $[(thf)K(\mu-\eta^5:\eta^5-Pdl')]_{\infty}$: Data were recorded at 130(2) K because the crystals disintegrate at 100 K. The space group is $P2_12_12_1$, but the structure was refined as a racemic twin (Flack parameter 0.49(2)), and the symmetry is close to Pnma (with b and c axes exchanged). However, the refinement in this space group proceeded to the unsatisfactory wR2 value of 0.2, and some U values were high. Using the program suite PLATON (A. L. Spek, University of Utrecht, Netherlands) the mean deviation of the P2₁2₁2₁ positions from Pnma was calculated to be 0.17 Å, with maximum deviation 0.30 Å for some atoms of the THF. Furthermore, around 100 reflections that should be systematically absent in *Pnma* displayed significant intensity. We therefore prefer the structure model with the lower symmetry. Complex 3: Each of the THF molecules is disordered over two positions with an (assumed) common oxygen atom position. Similarity restraints were employed, but the C-O bond lengths remain significantly different. It is possible that the oxygen positions are also slightly disordered, but a suitable model could not be refined. Dimensions of the THF ligands should be interpreted with caution.

Complex	[(thf)K(μ-η ⁵ :η ⁵ - Pdl')] _∞	1	2	3
Chemical formula	$C_{17}H_{31}KO$	C ₃₀ H ₅₄ CaO	$C_{30}H_{54}SrO$	$C_{34}H_{62}BaO_2$
Formula Mass	290.52	470.81	518.35	640.18
Crystal system	orthorhombic	monoclinic	triclinic	triclinic
$a/\text{\AA}$	10.1190(2)	9.9014(2)	9.7948(5)	9.5411(3)
b/Å	10.7148(6)	21.7075(4)	14.1834(5)	12.0829(3)
$c/{ m \AA}$	16.4367(9)	14.4003(3)	23.3962(10)	15.6171(5)
$\alpha/^{\circ}$	90.00	90.00	88.549(3)	96.320(2)
$\beta/^{\circ}$	90.00	105.501(2)	79.821(2)	97.530(3)
γ/°	90.00	90.00	71.131(2)	98.661(3)
Unit cell volume/Å ³	1782.11(14)	2982.56(10)	3025.4(2)	1748.97(9)
Temperature/K	130(2)	100(2)	100(2)	100(2)
Space group	$P2_{1}2_{1}2_{1}$	$P2_{1}/n$	$P\bar{1}$	$P\bar{1}$
No. of formula units per unit cell, Z	4	4	4	2
Radiation type	CuKα	CuKa	ΜοΚα	ΜοΚα
Absorption coefficient, μ/mm^{-1}	2.526	1.923	1.800	1.160
No. of reflections measured	18651	78853	132306	92321
No. of independent reflections	3697	6171	15422	10431
R _{int}	0.1075	0.0475	0.1111	0.0306
Final R_I values $(I > 2\sigma(I))$	0.0498	0.0296	0.0544	0.0222
Final $wR(F^2)$ values $(I > 2\sigma(I))$	0.1245	0.0785	0.0724	0.0493
Final R_1 values (all data)	0.0572	0.0306	0.1022	0.0262
Final $wR(F^2)$ values (all data)	0.1304	0.0794	0.0825	0.0514
Goodness of fit on F^2	1.015	1.050	1.037	1.053

Table S1 Crystallographic details.

3. References

- 1. M. J. Harvey and T. P. Hanusa, Organometallics, 2000, 19, 1556.
- M. J. McCormick, S. C. Sockwell, T. P. Hanusa and J. C. Huffman, J. Am. Chem. Soc., 1992, 114, 3393.
- 3. M. J. Harvey, T. P. Hanusa and V. G. Young, Jr., J. Organomet. Chem., 2001, 626, 43.
- 4. R. D. Ernst, J. W. Freeman, P. N. Swepston and D. R. Wilson, *J. Organomet. Chem.*, 1991, **402**, 17-25.
- 5. J. S. Overby and T. P. Hanusa, Angew. Chem. Int. Ed. Engl., 1994, 33, 2191-2193.

a) G. M. Sheldrick, SHELXL-97, Program for the Refinement of Crystal Structure from Diffraction Data, (1997), University of Göttingen, Göttingen; b) G. M. Sheldrick, Acta Cryst., 2008, A64, 112.