Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2014

Supporting Information

for

Crystal Structures and Magnetic Properties of a Set of Dihalo-Bridged Oxalamidato Copper(II) Dimers

Dijana Žilić,^a Boris Rakvin,^a Dalibor Milić,^{b‡} Damir Pajić,^c Ivica Đilović,^b Massimo Cametti^d and Zoran Džolić^{*a}

^a Ruđer Bosković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; E-mail: <u>Zoran.Dzolic@irb.hr</u>
^b Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102A, 10000 Zagreb, Croatia
^c Department of Physics, Faculty of Science, University of Zagreb, Bijenička cesta 32, 10000 Zagreb, Croatia
^d Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via L. Mancinelli 7, 20131 Milano, Italy
^{*} Present address: Paul Scherrer Institut, 5232 Villigen PSI, Switzerland

Table of content

Fig. S1: FT-IR spectra of the ligand L^1 and complexes L^1 -Cl and L^1 -Br	page 2
Fig. S2: FT-IR spectra of the ligand L^2 and complexes L^2 -Cl and L^2 -Br	page 2
Fig. S3: Comparison between measured and calculated powder diffraction patterns for L^1 -Cl	page 3
Fig. S4: Comparison between measured and calculated powder diffraction patterns for L^2 -Cl	page 3
Fig. S5: Comparison between measured and calculated powder diffraction patterns for L^1 -Br	page 4
Fig. S6: Comparison between measured and calculated powder diffraction patterns for L^2 -Br	page 4
Description of the Crystal Packing Interactions for L^2 -Cl, L^1 -Br and L^2 -Br	page 5
Table 5: Relevant hydrogen-bonding parameters.	page 6
Table 6: Relevant stacking interactions.	page 6
Table 7: Relevant C–H··· π interactions	page 7
Fig. S7: Atom numbering schemes for L^1 -Cl and L^2 -Cl	page 8
Fig. S8: Atom numbering schemes for L^1 -Br and L^2 -Br	page 9
Fig. S9: Molecular packing in the crystal structure of L^2 -Cl	page 10
Fig. S10: Molecular packing in the crystal structure of L^1 – Br	page 11
Fig. S11: Molecular packing in the crystal structure of L^2 – Br	page 12
Fig. S12: Angular variation of the <i>g</i> -values and the <i>Wpp</i> linewidths of EPR lines for L^2 -Cl	page 13
Fig. S13: Angular variation of the <i>g</i> -values and the Wpp linewidths of EPR lines for L^1 -Br	page 14
Fig. S14: Angular variation of the <i>g</i> -values and the <i>Wpp</i> linewidths of EPR lines for L^2 -Br	page 15
Fig. S15: Temperature dependence of magnetization and Curie-Weiss fitting curves	page 16
Table 8: Structural and magnetic properties for the selected dibromo-bridged copper(II) dimers	page 17

Fig. S1: FT-IR spectra of the ligand L^1 (black line) and complexes L^1 -Cl (green line) and L^1 -Br (red line).

Fig. S2: FT-IR spectra of the ligand L^2 (black line) and complexes L^2 -Cl (green line) and L^2 -Br (red line).

Fig. S3: Comparison between the measured (blue) and the calculated (red) powder diffraction patterns for L^1 -Cl.

Fig. S4: Comparison between the measured (blue) and the calculated (red) powder diffraction patterns for L^2 -Cl.

Fig. S5: Comparison between the measured (blue) and the calculated (red) powder diffraction patterns for L^1 -Br.

Fig. S6: Comparison between the measured (blue) and the calculated (red) powder diffraction patterns for L^2 -Br.

Description of the Crystal Packing Interactions for L^2 -Cl, L^1 -Br and L^2 -Br.

The crystal structure of L^1 -Cl has been described in a previous occasion [Z. Džolić et al., *Chem.-Eur.* J., 2013, **19**, 5411–5416]. Here, we provide a description of the crystal packing interactions observed in the three other complexes (L^2 -Cl, L^1 -Br and L^2 -Br). Complete atom numbering schemes are presented in Figures S7 and S8. Geometrical details of the hydrogen bonding, stacking and C-H… π interactions are given in Tables 5, 6 and 7, respectively.

A common structural motif present in all cases is constituted by an infinite chain of molecular dimers connected by N–H…O hydrogen bonds between the oxalamide groups (Figure 4 in the article). Other supramolecular structural features, instead, differ among the four crystal structures. In the structure of L^2 –Cl, *N*-benzyl group are found having two different conformations, with the minor one (yellow in Figure S9) occurring in 16 % of monomers. The intramolecular C15A-H15A…O2 bonds form only when the *N*-benzyl group assumes the major conformation (gray in Figure S9). The dinuclear complexes are also linked by C–H… π interactions between the methylene groups and the metalloaromatic chelate rings as well as those between the pyridyl and the disordered *N*-benzyl units, regardless of which of the two possible conformation is adopted (Figure S9c). In addition to the characteristic N–H…O hydrogen bonds in L^2 –Cl, there are also weak intermolecular C4–H4…C11 (–1 – *x*, 2 – *y*, 1 – *z*) interactions (Figure S9b).

Stacking interactions between pyridine and metalloaromatic chelate rings play an important role in crystal packing of L¹–Cl as well as of both L¹–Br and L²–Br dimers (Figures S10 and S11). Furthermore, these stacking interactions are accompanied with the C–H…O bonds between pyridyl moieties and the ester carbonyl O atoms of the two L¹–Br molecules stacked together (Figure 11b) or, in case of L²–Br, C–H… π interactions involving a pyridyl *para* C–H and an *N*-benzyl aromatic ring (Figure S11b). In the structure of L¹–Br, a weak C–H… π interaction there also exists, but between methyl C28–H28C and the metalloaromatic chelate ring of the adjacent dimer (Figure S10). Moreover, L¹–Br and L²–Br also possess other weak intermolecular C–H…A interactions, as detailed in Table 5 and illustrated in Figures S10 and S11. Surprisingly, π – π stacking interactions between aryl groups are only present in the structure of L²–Br (Figure S11b).

	$D-H\cdots A$	D–H	Н…А	$D \cdots A$	D–H···A	Symmetry operator on A
L ¹ -Cl	N3–H3N…O5	0.86(2)	2.08(3)	2.858(3)	150(2)	1 + x, 1 + y, z
	N6-H6N…O1	0.85(2)	1.99(3)	2.816(3)	163(2)	-1 + x, -1 + y, z
	O9-H9A…Cl2	0.84	2.46	3.256(5)	158	
	С2-Н2…О9	0.95	2.42	3.240(7)	144	1 + x, y, z
	С19-Н19…ОЗ	0.95	2.46	3.126(4)	127	-1 + x, y, z
	C20-H20···Cl2	0.95	2.79	3.366(2)	120	
	C25-H25A…O1	0.99	2.54	3.257(3)	129	-1 + x, -1 + y, z
L^2 –Cl	N3-H3N…O1	0.86(2)	1.96(2)	2.721(3)	147(2)	1 - x, 1 - y, 1 - z
	C15A-H15A…O2	0.95	2.50	3.183(5)	129	
	C4–H4…Cl1	0.95	2.75	3.659(3)	162	-1-x, 2-y, 1-z
1						
L'–Br	N3–H3N…O5	0.88	1.96	2.796(5)	159	1 + x, y, -1 + z
	N6-H6N…O1	0.88	1.98	2.758(5)	146	-1 + x, y, 1 + z
	С3–Н3…О7	0.95	2.35	3.241(6)	157	1 + x, y, z
	C10–H10B…O5	0.99	2.46	3.101(5)	122	1 + x, y, -1 + z
	C18–H18…O3	0.95	2.53	3.424(6)	156	-1 + x, y, z
	C21–H21B…O7	0.99	2.46	3.404(5)	159	x, -1 + y, z
2						
L ² –Br	N3-H3N…O1	0.88	2.09	2.802(6)	138	2 - x, 1 - y, 1 - z
	C6–H6A…Br1	0.99	2.87	3.750(5)	148	2 - x, 1 - y, -z

Table 5 Hydrogen-bonding parameters (Å, $^{\circ}$) in crystal structures of the studied complexes.

Table 6 Stacking interactions (Å, $^{\circ}$) in the studied crystal structures.

	Ring m ····Ring n^a	Cgm…Cgn ^b	α^{c}	Mean plane of	Ring	Symmetry
	88			Ring <i>m</i> …Cgn	offset	operator on ring <i>n</i>
L ¹ –Cl	Ring 1…Ring 4	3.644(1)	4.9(1)	3.528(1)		1 + x, y, z
	Ring 2····Ring 3	3.647(1)	8.1(1)	3.542(1)		x - 1, y, z
L ¹ –Br	Ring 1Ring 4	3.675(2)	5.4(2)	3.482(2)		1 + x, y, z
	Ring 2····Ring 3	3.652(2)	6.8(2)	3.492(2)		x - 1, y, z
L ² –Br	Ring 1…Ring 3	3.601(3)	5.7(2)	3.496(2)		2 - x, 1 - y, -z
	Ring 5…Ring 5	3.708(4)	0	3.566(3)	ca. 1.02	1 - x, -y, 1 - z

^{*a*} Definition of the rings:

Ring 1 – metalloaromatic chelate ring Cu1/O2/C8/C7/N2;

Ring 2 – metalloaromatic chelate ring Cu2/O6/C23/C22/N5;

Ring 3 – pyridyl ring N1/C1–C5;

Ring 4 – pyridyl ring N4/C16–C20;

Ring 5 – phenyl ring C10–C15. ^b Cgm and Cgn are centroids of the rings m and n.

^c α is the dihedral angle between the mean planes of the two interacting rings (*m* and *n*).

	D –H··· Cg^a	$H \cdots Cg$	D····Cg	D–H··· Cg	Symmetry operator on Cg
L^2 –Cl	C2–H2…Cg5A	2.68	3.573(4)	156	-x, 1-y, 1-z
	C2–H2…Cg5B	2.82	3.527(7)	132	-x, 1-y, 1-z
	C6–H6B…Cg1	3.00	3.927(2)	157	-x, 1-y, 1-z
L ¹ –Br	C28–H28C…Cg1	2.95	3.586(5)	123	<i>x</i> , <i>y</i> , <i>z</i> + 1
L ² –Br	C3–H3… <i>Cg</i> 5 C13–H13… <i>Cg</i> 1	2.58 2.98	3.464(6) 3.908(7)	154 167	2 - x, 1 - y, -z x, y - 1, z

Table 7 C–H··· π interactions (Å, °) in the studied structures.

^{*a*} Definition of the ring centroids:

Cg1 – metalloaromatic chelate ring Cu1/O2/C8/C7/N2;

Cg5 – phenyl ring C10A–C15A; Cg5A – phenyl ring of L²–Cl in the major disordered conformation C10A–C15A; Cg5B – phenyl ring of L²–Cl in the minor disordered conformation C10B–C15B.

Fig. S7: Atom numbering schemes for (a) L^1 -Cl and (b) L^2 -Cl. Dashed lines represent the minor conformation of the disordered *N*-benzyl group. Atoms labelled with "a" in L^2 -Cl are centrosymmetrically related to those in the other half of a molecule.

Fig. S8: Atom numbering schemes for (a) L^1 –**Br** and (b) L^2 –**Br**. Atoms labelled with "a" in L^2 –**Br** are centrosymmetrically related to those in the other half of a molecule.

Fig. S9: Molecular packing in the crystal structure of L^2 –Cl. (a) Supramolecular architecture allows the discrete disorder of *N*-benzyl groups. (b) In addition to the N–H…O hydrogen bonds, the C–H…O and C–H…Cl interactions are also present. (c) C–H… π interactions play a role in the molecular association. Minor conformation of the disordered *N*-benzyl group is depicted in yellow, except in (b) where it is omitted for clarity. *Cgn* denotes a centroid of the ring *n* as defined in Table 7. Interactions are represented as dashed lines in different colours: *cyan* for C–H… π interactions and *black* for other types of hydrogen bonding. H atoms bound to C atoms are omitted for clarity in (a). Cu and Cl atoms are shown as large spheres.

Fig. S10: Molecular packing in the crystal structure of L^1 -Br. (a) An infinite chain of N-H····O hydrogen-bonded molecular dimers. (b) Stacking, C-H··· π and C-H···O interactions. Cgn denotes a centroid of the ring n as defined in Table 6. Interactions are represented as dashed lines in different colours: green for the stacking interactions, cyan for a C-H $\cdots\pi$ interaction and black for other types of hydrogen bonding. Cu and Br atoms are shown as large spheres.

Fig. S11: Molecular packing in the crystal structure of L^2 -Br. (a) N-H···O and C-H···Br hydrogen bonds. (b) Stacking and C-H··· π interactions. *Cgn* denotes a centroid of the ring *n* as defined in Table 6. Interactions are represented as dashed lines in different colours: *green* for the stacking interactions, *cyan* for C-H··· π interactions and *black* for other types of hydrogen bonding. Cu and Br atoms are shown as large spheres.

Fig. S12: Angular variation of the *g*-values (black squares) and the *Wpp* linewidths (red circles) of EPR lines for the single crystal of compound L^2 –Cl, at room temperature, in three mutually perpendicular planes. Solid lines represent the fitted *g*-values with parameters given in Table 2 and *Wpp* linewidths with parameters given in the figure, according to eq. 1 and eq. 2, respectively.

Fig. S13: Angular variation of the *g*-values (black squares) and the *Wpp* linewidths (red circles) of EPR lines for the single crystal of compound L^1 –**Br**, at room temperature, in three mutually perpendicular planes. Solid lines represent the fitted *g*-values with parameters given in Table 2 and *Wpp* linewidths with parameters given in the figure, according to eq. 1 and eq. 2, respectively.

Fig. S14: Angular variation of the *g*-values (black squares) and the *Wpp* linewidths (red circles) of EPR lines for the single crystal of compound L^2 -Br, at room temperature, in three mutually perpendicular planes. Some EPR lines were too weak and/or too broad to be detected.

Fig. S15: Temperature dependence of magnetization, measured in field of 0.1 T. Lines are fitting curves using the Curie-Weiss model. We have obtained the following Curie constants (in emuK/molOe): 0.982(5), 0.829(3), 0.854(7) and 0.859(5), for complexes L^1 -Cl, L^2 -Cl, L^1 -Br and L^2 -Br, respectively. The resultant *g*-factors are 2.29(1), 2.10(1), 2.14(1) and 2.14(1) and Weiss parameters are -0.6(3)K, -1.3(7)K, -0.1(2)K, and -1.0(4)K, for L^1 -Cl, L^2 -Cl, L^1 -Br and L^2 -Br, respectively.

Table 8 Structural and magnetic	properties for the selected	dibromo-bridged copper(II) dimers
---------------------------------	-----------------------------	-----------------------------------

Compound ^a	Geometry	τ	$2J ({\rm cm}^{-1})$	Ref.
$[Cu(\alpha-pic)_2Br_2]_2$	SP	0	-5	55
$[Cu(dmen)Br_2]_2$	SP	0.11	-2.4	30
$[Cu(dmgH)Br_2]_2$	SP	0.025	-3.02	56
$[Cu(4-metz)_2Br_2]_2$	SP	0.045	-2.4	50
$[Cu(dien)Br_2]_2(ClO_4)_2$	SP	0.3	2.8	12
$[Cu(4-meox)_2Br_2]_2$	SP	0.26	-15.2	57
$[Cu(terpy)Br]_2(PF_6)_2$	SP	0.24	-7.4	49
$[Cu(L^a)Br_2]_2$	SP	0.02;0.1	-11.76	10
$[Cu(L^b)Br]_2$	SP	0.03	-3.14	58
$[Cu(tmen)Br_2]_2$	SP	0.25	-4	54, 59
L^1 –Br	SP	0.04;0.00	-0.14	this work
L ² –Br	SP	0.10	-2.36	this work
$[Cu(MAEP)Br_2]_2$	TBP	0.52	-4.3	60
$(3ap)_2[Cu_2Br_6]_2 \cdot 2H_2O$	TBP	0.6	-53.8	61
$[Cu(dmtp)_2Br_2]_2 \cdot 2H_2O$	TBP	0.62	-21.1	54

^{*a*} Abbreviations: α -pic = α -picoline (2-methylpyridine); MAEP = 2-(2-(methylamino)ethyl)pyridine; dmen = *N*,*N*-dimethylethylenediamine; dmgH = dimethylglyoxime; 4-metz = 4-methylthiazole; dien = diethylenetriamine; 4-meox = 4-methyloxazole; terpy = 2,2':6',2"-terpyridine; L^{*a*} = 1,4-diazacycloheptane; HL^{*b*} = *N*-(1H-pyrrol-2-ylmethylene)-2-pyridineethanamine; tmen = *N*,*N*,*N'*,*N'*-tetramethylethylenediamine; 3ap = 3-aminopyridinium cation; dmtp = 5,7 dimethyl-1,2,4-triazolo[1,5- α]pyrimidine; SP = square pyramid and TBP = trigonal bipyramid.