Metal ions and solvents ratio co-regulate four new magnetic coordination polymers based upon unsymmetric tricarboxylate acid ligand

Yuan-Pu Li, Ying Chai, Guo-Ping Yang, Hui-Hui Miao, Lin Cui, Yao-Yu Wang* and Qi-Zhen

Shi

Compound	1	2	3	4
empirical formula	$C_{70}H_{54}Co_3O_{16}N_{12}$	$C_{54}H_{50}Mn_3N_8O_{20}$	C ₂₇ H ₂₄ NiN ₄ O ₉	C ₇₈ H ₇₄ Ni ₃ N ₁₆ O ₃₄
formula mass	1494.06	1295.84	607.21	1955.66
Crystal system	Triclinic	Triclinic	Orthorhombic	Monoclinic
Space group	Pī	Pī	$P2_{1}2_{1}2_{1}$	<u>P2₁/c</u>
a (Å)	10.193(4)	10.125(8)	11.6286(16)	13.683(2)
b (Å)	13.722(5)	10.7664(9)	13.6585(18)	23.839(4)
c (Å)	14.606(6)	13.2928(12)	15.944(2)	14.576(2)
α(°)	107.685(6)	86.521(10)	90	90
β(°)	102.170(7)	73.151(2)	90	90.745(4)
γ(°)	111.188(6)	85.317(10)	90	90
V (Å ³)	1692.5(11)	1381.2(2)	2532.4(6)	4685.8(12)
Z	1	1	4	2
D _{calcd} (mg/cm ³)	1.468	1.558	1.593	1.386
μ(mm ⁻¹)	0.805	0.762	0.832	0.686
F(000)	767	665	1256	2020
Θ (°)	25.10	26.24	26.27	25.10
GOF	1.044	1.012	1.009	1.153
R1 ^a	0.0745	0.0514	0.0533	0.0890
wR_2^b	0.2073	0.1315	0.1086	0.2193

Table S1 Crystal and structure refinement data for 1–4

^a $R_1 = \sum ||F_0| - |F_c|| / \sum |F_0|$. ^b $_W R_2 = \{\sum [_W (F_0^2 - F_c^2)^2] / \sum (F_0^2)^2 \}^{1/2}$

Compound 1			
Co(1)-O(6)	2.094(5)	N(4)-Co(2)-N(1)	177.7(2)
Co(1)-O(6)#1	2.094(5)	O(1)-Co(2)-O(4)#3	93.85(17)
Co(1)-O(7)	2.119(6)	O(2)#2-Co(2)-O(4)#3	153.21(18)
Co(1)-O(7)#1	2.119(6)	N(4)-Co(2)-O(4)#3	89.9(2)
Co(1)-N(5)	2.149(5)	N(1)-Co(2)-O(4)#3	90.20(19)
Co(1)-N(5)#1	2.149(5)	O(1)-Co(2)-O(3)#3	153.13(16)
Co(2)-O(1)	2.047(5)	O(2)#2-Co(2)-O(3)#3	93.44(16)
Co(2)-O(2)#2	2.070(4)	N(4)-Co(2)-O(3)#3	95.4(2)
Co(2)-N(4)	2.122(6)	N(1)-Co(2)-O(3)#3	86.65(19)
Co(2)-N(1)	2.148(5)	O(4)#3-Co(2)-O(3)#3	59.92(16)
Co(2)-O(4)#3	2.168(4)	C(25)-N(1)-C(26)	106.4(5)
Co(2)-O(3)#3	2.256(5)	C(25)-N(1)-Co(2)	125.9(5)
O(2)-Co(2)#2	2.070(4)	C(26)-N(1)-Co(2)	127.4(4)
O(3)-Co(2)#3	2.256(5)	C(25)-N(2)-C(27)	108.3(5)
O(4)-Co(2)#3	2.168(4)	C(25)-N(2)-C(17)#6	126.1(6)
O(6)-Co(1)-O(6)#1	180.000(1)	C(27)-N(2)-C(17)#6	125.5(6)
O(6)-Co(1)-O(7)	86.4(2)	C(23)-N(3)-C(22)	106.6(5)
O(6)#1-Co(1)-O(7)	93.6(2)	C(23)-N(3)-C(20)	128.8(6)
O(6)-Co(1)-O(7)#1	93.6(2)	C(22)-N(3)-C(20)	124.6(5)
O(6)#1-Co(1)-O(7)#1	86.4(2)	C(23)-N(4)-C(24)	104.3(5)
O(7)-Co(1)-O(7)#1	180.000(1)	C(23)-N(4)-Co(2)	125.6(5)
O(6)-Co(1)-N(5)	90.2(2)	C(24)-N(4)-Co(2)	129.7(4)
O(6)#1-Co(1)-N(5)	89.8(2)	C(33)-N(5)-C(31)	107.4(5)
O(7)-Co(1)-N(5)	89.6(2)	C(33)-N(5)-Co(1)	129.5(5)
O(7)#1-Co(1)-N(5)	90.4(3)	C(31)-N(5)-Co(1)	122.9(4)
O(6)-Co(1)-N(5)#1	89.8(2)	C(33)-N(6)-C(32)	106.3(5)
O(6)#1-Co(1)-N(5)#1	90.2(2)	C(33)-N(6)-C(30)	125.8(6)
O(7)-Co(1)-N(5)#1	90.4(3)	C(32)-N(6)-C(30)	127.9(5)
O(7)#1-Co(1)-N(5)#1	89.6(2)	C(21)-O(1)-Co(2)	145.3(4)
N(5)-Co(1)-N(5)#1	180.0(3)	C(21)-O(2)-Co(2)#2	124.3(4)
O(1)-Co(2)-O(2)#2	112.27(17)	C(13)-O(3)-Co(2)#3	87.1(4)
O(1)-Co(2)-N(4)	89.8(2)	C(13)-O(4)-Co(2)#3	91.4(3)
O(2)#2-Co(2)-N(4)	95.8(2)	C(14)-O(6)-Co(1)	131.1(5)
O(1)-Co(2)-N(1)	87.87(19)	C(34)-O(7)-Co(1)	128.3(6)
Compound 2			
Mn(1)-O(6)	2.0967	O(8)-Mn(1)-O(3)#1	92.3
Mn(1)-O(8)	2.1888(11)	N(1)-Mn(1)-O(3)#1	144.2
Mn(1)-N(1)	2.1902	O(7)-Mn(1)-O(3)#1	92.1
Mn(1)-O(7)	2.2539(11)	O(4)#1-Mn(1)-O(3)#1	56.3
Mn(1)-O(4)#1	2.2643	O(2)#2-Mn(2)-O(2)	180
Mn(1)-O(3)#1	2.3301	O(2)#2-Mn(2)-N(3)	90.5

Table S2 Selected bond lengths (Å) and bond angles (°) for CPs 1-4.

Mn(2)-O(2)#2	2.1118	O(2)-Mn(2)-N(3)	89.5
Mn(2)-O(2)	2.1118	O(2)#2-Mn(2)-N(3)#2	89.5
Mn(2)-N(3)	2.2438	O(2)-Mn(2)-N(3)#2	90.5
Mn(2)-N(3)#2	2.2438	N(3)-Mn(2)-N(3)#2	180
Mn(2)-O(9)#2	2.3228	O(2)#2-Mn(2)-O(9)#2	96.2
Mn(2)-O(9)	2.3228	O(2)-Mn(2)-O(9)#2	83.8
O(3)-Mn(1)#5	2.3301	N(3)-Mn(2)-O(9)#2	86.7
O(4)-Mn(1)#5	2.2643	N(3)#2-Mn(2)-O(9)#2	93.3
O(6)-Mn(1)-O(8)	88.2	O(2)#2-Mn(2)-O(9)	83.8
O(6)-Mn(1)-N(1)	126.3	O(2)-Mn(2)-O(9)	96.2
O(8)-Mn(1)-N(1)	84.8	N(3)-Mn(2)-O(9)	93.3
O(6)-Mn(1)-O(7)	93.6	N(3)#2-Mn(2)-O(9)	86.7
O(8)-Mn(1)-O(7)	175.2	O(9)#2-Mn(2)-O(9)	180
N(1)-Mn(1)-O(7)	90.5	C(18)-N(1)-Mn(1)	126.67(19)
O(6)-Mn(1)-O(4)#1	145.4	C(16)-N(1)-Mn(1)	127.93(18)
O(8)-Mn(1)-O(4)#1	94.9	C(1)-O(2)-Mn(2)	168.56(18)
N(1)-Mn(1)-O(4)#1	88.3	C(11)-O(3)-Mn(1)#5	90.09(19)
O(7)-Mn(1)-O(4)#1	86.2	C(11)-O(4)-Mn(1)#5	93.28(19)
O(6)-Mn(1)-O(3)#1	89.1	C(14)-O(6)-Mn(1)	113.88(18)
Compound 3			
Ni(1)-O(1)	2.030(4)	O(1)-Ni(1)-O(7)	88.42(15)
Ni(1)-N(4)#1	2.066(5)	N(4)#1-Ni(1)-O(7)	88.58(17)
Ni(1)-N(1)	2.065(4)	N(1)-Ni(1)-O(7)	176.20(17)
Ni(1)-O(8)	2.074(4)	O(8)-Ni(1)-O(7)	85.65(15)
Ni(1)-O(7)	2.104(4)	O(1)-Ni(1)-O(9)	175.86(17)
Ni(1)-O(9)	2.106(4)	N(4)#1-Ni(1)-O(9)	93.55(18)
N(4)-Ni(1)#2	2.066(5)	N(1)-Ni(1)-O(9)	89.64(17)
O(1)-Ni(1)-N(4)#1	87.49(16)	O(8)-Ni(1)-O(9)	86.62(17)
O(1)-Ni(1)-N(1)	94.28(17)	O(7)-Ni(1)-O(9)	87.60(16)
N(4)#1-Ni(1)-N(1)	94.20(18)	C(18)-N(1)-Ni(1)	127.2(4)
O(1)-Ni(1)-O(8)	91.94(15)	C(16)-N(1)-Ni(1)	127.3(4)
N(4)#1-Ni(1)-O(8)	174.21(17)	C(25)-N(4)-Ni(1)#2	131.9(4)
N(1)-Ni(1)-O(8)	91.59(16)	C(26)-N(4)-Ni(1)#2	123.5(4)
		C(1)-O(1)-Ni(1)	132.8(4)
Compound 4			
Ni(1)-N(4)	2.053(7)	O(5)-Ni(1)-O(4)#1	90.5(2)
Ni(1)-N(4)#1	2.053(7)	O(5)#1-Ni(1)-O(4)#1	89.5(2)
Ni(1)-O(5)	2.069(6)	O(4)-Ni(1)-O(4)#1	179.999(1)
Ni(1)-O(5)#1	2.069(6)	N(7)#2-Ni(2)-O(1)	86.5(3)
Ni(1)-O(4)	2.082(5)	N(7)#2-Ni(2)-N(2)	91.0(3)
Ni(1)-O(4)#1	2.082(5)	O(1)-Ni(2)-N(2)	90.0(3)
Ni(2)-N(7)#2	2.054(7)	N(7)#2-Ni(2)-N(5)	176.7(3)
Ni(2)-O(1)	2.079(6)	O(1)-Ni(2)-N(5)	93.7(3)
Ni(2)-N(2)	2.079(7)	N(2)-Ni(2)-N(5)	92.2(3)
× / × /	· · · · · · · · · · · · · · · · · · ·		× /

Ni(2)-N(5)	2.084(7)	N(7)#2-Ni(2)-O(3)	88.1(3)
Ni(2)-O(3)	2.100(6)	O(1)-Ni(2)-O(3)	172.5(2)
Ni(2)-O(2)	2.109(6)	N(2)-Ni(2)-O(3)	95.3(3)
N(7)-Ni(2)#3	2.054(7)	N(5)-Ni(2)-O(3)	91.4(3)
N(4)-Ni(1)-N(4)#1	179.997(2)	N(7)#2-Ni(2)-O(2)	89.4(3)
N(4)-Ni(1)-O(5)	89.8(3)	O(1)-Ni(2)-O(2)	88.3(2)
N(4)#1-Ni(1)-O(5)	90.2(3)	N(2)-Ni(2)-O(2)	178.2(3)
N(4)-Ni(1)-O(5)#1	90.2(3)	N(5)-Ni(2)-O(2)	87.4(3)
N(4)#1-Ni(1)-O(5)#1	89.8(3)	O(3)-Ni(2)-O(2)	86.5(2)
O(5)-Ni(1)-O(5)#1	179.999(2)	C(3)-N(2)-Ni(2)	124.2(6)
N(4)-Ni(1)-O(4)	90.4(3)	C(1)-N(2)-Ni(2)	130.9(6)
N(4)#1-Ni(1)-O(4)	89.6(3)	C(12)-N(4)-Ni(1)	127.4(6)
O(5)-Ni(1)-O(4)	89.5(2)	C(11)-N(4)-Ni(1)	127.8(6)
O(5)#1-Ni(1)-O(4)	90.5(2)	C(15)-N(5)-Ni(2)	128.7(6)
N(4)-Ni(1)-O(4)#1	89.6(3)	C(13)-N(5)-Ni(2)	127.1(6)
N(4)#1-Ni(1)-O(4)#1	90.4(3)	C(24)-N(7)-Ni(2)#3	129.7(6)
C(23)-N(7)-Ni(2)#3	124.1(6)		

Symmetry Codes: **Compound 1**: #1 = -x, -y, -z + 1; #2 = -x, -y + 2, -z + 2; #3 = -x + 1, -y + 2, -z + 2; #4 = x, y - 1, z; #5 = -x - 1, -y - 1, -z + 1; #6 = x, y + 1, z.

Compound 2: #1= x - 1, y, z; #2=-x, -y + 2, -z; #3= -x - 1, -y + 3, -z; #4= -x, -y, -z + 1; #5= x + 1, y, z.

Compound 3: #1 = -x + 5/2, -y + 1, z + 1/2; #2 = -x + 5/2, -y + 1, z-1/2.

Compound 4: #1 = -x, -y + 1, -z + 2; #2 = x - 1, y, z; #3= x + 1, y, z.

Table S3 Hydrogen bond distances and bond angles (Å, °) for 3

Donor-H···Acceptor	D – H	Н…А	D····A	$D - H \cdots A$
O(3)–H(3)····O(6)	0.82	1.88	2.661(5)	160
O(7)−H(7B)····O(5)	0.85	1.88	2.726(5)	173
O(8)−H(8A)····O(2)	0.82	1.99	2.718(5)	148
O(8)−H(8B)····O(6)	0.85	1.86	2.709(5)	179
O(9)−H(9A)····O(5)	0.82	1.98	2.793(6)	172
O(9)−H(9B)····O(2)	0.85	2.15	2.999(6)	174

Hydrogen bond distances and bond angles (Å, °) for 4

Donor-H···Acceptor	D – H	Н…А	D····A	$D - H \cdots A$
O(1)−H(1A)····O(6)	0.82	2.03	2.694(8)	138
O(1)−H(1B)····O(9)	0.82	1.88	2.651(9)	157

O(2)−H(2A)···O(4W)	0.82	2.07	2.795(11)	147
O(3)−H(3A)···O(6)	0.82	2.05	2.769(8)	146
O(3)–H(3B)····O(2)	1.07	2.21	2.882(8)	119
O(4)–H(4A)···O(10)	0.82	1.94	2.747(8)	168
O(5)−H(5A)···O(6)	0.82	2.30	2.710(7)	111
O(5)–H(5B)···O(4)	0.85	2.57	2.922(7)	106
O(5)–H(5B)····O(10)	0.85	1.89	2.743(8)	179

Figure S1. The Powder X-ray diffraction (PXRD) patterns of 1.

Figure S2. The Powder X-ray diffraction (PXRD) patterns of **2**.

Figure S3. The Powder X-ray diffraction (PXRD) patterns of 3.

Figure S4. The Powder X-ray diffraction (PXRD) patterns of 4.

Figure S5. The TGA analyses of the compound 1 - 4.

Figure S6. Solid-state CD spectra of bulk sample of compound 3 at room temperature.