Electronic Supplementary Information for

Positional Isomeric Tunable Two Co(II) 6-Connected 3-D Frameworks with Pentanuclear to Binuclear Units: Structures, Ion-Exchange and Magnetic Properties

Min-Le Han,^{a,b} Ya-Ping Duan,^a Dong-Sheng Li, *^{,a,b} Hai-Bin Wang,^a Jun Zhao,^a and Yao-Yu Wang^b

^aCollege of Materials and Chemical Engineering, Collaborative Innovation Center for Microgrid of New Energy of Hubei Province, China Three Gorges University, Yichang 443002, P. R. China ^bKey Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R.

China

* Corresponding author: College of Materials and Chemical Engineering, China Three Gorges University, Yichang, P. R. China. Tel./Fax: +86-717- 6397506;

E-mail address: lidongsheng1@126.com (D.-S. Li)

1						
Co(1)-O(5)#1	2.078(2)	Co(1)-O(5)	2.078(2)			
Co(1)-O(2)	2.077(2)	Co(1)-O(2)#1	2.077(2)			
Co(1)-O(7)#1	2.101(2)	Co(1)-O(7)	2.101(2)			
Co(2)-O(5)	2.067(2)	Co(2)-O(4)#2	2.071(2)			
Co(2)-N(4)#3	2.112(3)	Co(2)-N(8)#1	2.122(3)			
Co(2)-O(6)#1	2.154(2)	Co(2)-O(2)#1	2.248(2)			
Co(3)-O(3)#2	2.024(3)	Co(3)-O(5)	2.043(2)			
Co(3)-N(5)	2.103(3)	Co(3)-N(1)	2.142(3)			
Co(3)-O(1)	2.150(2)	Co(3)-O(7)	2.354(2)			
O(2)-Co(1)-O(2)#1	180.000(1)	O(2)-Co(1)-O(5)	95.87(8)			
O(2)#1-Co(1)-O(5)	84.13(8)	O(2)-Co(1)-O(5)#1	84.13(8)			
O(2)#1-Co(1)-O(5)#1	95.87(8)	O(5)-Co(1)-O(5)#1	180.000(1)			
O(2)-Co(1)-O(7)	89.87(9)	O(2)#1-Co(1)-O(7)	90.13(9)			
O(5)-Co(1)-O(7)	85.30(9)	O(5)#1-Co(1)-O(7)	94.70(9)			
O(2)-Co(1)-O(7)#1	90.13(9)	O(2)#1-Co(1)-O(7)#1	89.87(9)			
O(5)-Co(1)-O(7)#1	94.70(9)	O(5)#1-Co(1)-O(7)#1	85.30(9)			
O(7)-Co(1)-O(7)#1	180.000(1)	O(5)-Co(2)-O(4)#2	94.10(9)			
O(5)-Co(2)-N(4)#3	93.08(10)	O(4)#2-Co(2)-N(4)#3	92.52(11)			
O(5)-Co(2)-N(8)#1	172.51(10)	O(4)#2-Co(2)-N(8)#1	90.20(11)			
	00 0((11)		07.05(0)			
N(4)#3-Co(2)-N(8)#1	92.86(11)	O(5)-Co(2)-O(6)#1	87.05(9)			
O(4)#2-Co(2)-O(6)#1	176.45(10)	N(4)#3-Co(2)-O(6)#1	90.76(11)			
N(8)#1-Co(2)-O(6)#1	88.31(11)	O(5)-Co(2)-O(2)#1	80.22(8)			
O(4)#2-Co(2)-O(2)#1	87.58(10)	N(4)#3-Co(2)-O(2)#1	173.29(9)			
N(8)#1-Co(2)-O(2)#1	93.85(10)	O(6)#1-Co(2)-O(2)#1	89.31(9)			
O(3)#2-Co(3)-O(5)	96.08(9)	O(3)#2-Co(3)-N(5)	90.27(12)			

Table S1 Selected bond lengths (Å) and bond angles (°) for complexes 1 and 2.

O(5)-Co(3)-N(5)	169.64(10)	O(3)#2-Co(3)-N(1)	97.42(12)		
O(5)-Co(3)-N(1)	96.76(10)	N(5)-Co(3)-N(1)	90.49(12)		
O(3)#2-Co(3)-O(1)	174.41(11)	O(5)-Co(3)-O(1)	86.16(9)		
N(5)-Co(3)-O(1)	86.81(11)	N(1)-Co(3)-O(1)	87.37(10)		
O(3)#2-Co(3)-O(7)	88.40(10)	O(5)-Co(3)-O(7)	79.84(9)		
N(5)-Co(3)-O(7)	92.20(10)	N(1)-Co(3)-O(7)	173.57(10)		
O(1)-Co(3)-O(7)	86.96(9)				
2					
Co(1)-O(7)	2.057(2)	Co(2)-N(4)#3	2.131(3)		
Co(1)-O(3)#1	2.102(2)	Co(2)-O(1)	2.068(2)		
Co(1)-O(2)	2.101(2)	Co(2)-O(6)	2.066(2)		
Co(1)-N(1)	2.119(3)	Co(2)-O(8)#2	2.095(3)		
Co(1)-N(5)	2.154(3)	Co(2)-N(8)#3	2.128(3)		
Co(1)-O(5)	2.165(2)	Co(2)-O(5)	2.188(2)		
O(7)-Co(1)-O(3)#1	177.90(10)	O(7)-Co(1)-O(2)	95.01(10)		
O(2)-Co(1)-O(3)#1	84.77(11)	O(7)-Co(1)-N(1)	90.46(10)		
O(2)-Co(1)-N(1)	87.31(10)	O(3)#1-Co(1)-N(1)	91.62(11)		
O(7)-Co(1)-N(5)	89.17(10)	O(2)-Co(1)-N(5)	173.91(11)		
0(2)//1 (C. (1) N(5)	01 22(11)		00 22(11)		
O(3)#1- $Co(1)$ - $N(3)$	91.22(11)	N(1)-CO(1)-N(3)	88.23(11)		
O(7)-Co(1)-O(5)	88.91(9)	O(2)-Co(1)-O(5)	95.71(9)		
O(3)#1-Co(1)-O(5)	89.04(9)	N(1)-Co(1)-O(5)	176.96(10)		
N(5)-Co(1)-O(5)	88.78(9)	O(6)-Co(2)-O(1)	95.40(10)		
O(6)-Co(2)-O(8)#2	89.36(10)	O(1)-Co(2)-O(8)#2	173.97(9)		
O(6)-Co(2)-N(8)#3	176.74(11)	O(1)-Co(2)-N(8)#3	87.78(11)		
O(8)#2-Co(2)-N(8)#3	87.41(11)	O(6)-Co(2)-N(4)#3	91.23(11)		
O(1)-Co(2)-N(4)#3	88.31(10)	O(8)#2-Co(2)-N(4)#3	87.90(10)		

N(8)#3-Co(2)-N(4)#3	88.14(11)	O(6)-Co(2)-O(5)	89.15(9)
O(1)-Co(2)-O(5)	94.51(9)	O(8)#2-Co(2)-O(5)	89.24(9)
N(8)#3-Co(2)-O(5)	91.33(10)	N(4)#3-Co(2)-O(5)	177.11(11)

Symmetry codes: #1: -x + 1, -y + 1, -z + 1; #2: x, y + 1, z; #3: -x + 1, -y + 1, -z for **1**; #1: x + 1, y, z; #2: x, -y + 1, z + 1/2; #3: x - 1, -y + 2, z + 1/2 for **2**.

2

Figure S1 Comparison of the experimental and simulated PXRD patterns.

Figure S2 TGA plots of 1 and 2.