Supporting Information for

Loop Shaped Dicarboxylate-bridged Dimolybdenum(II) Bisphosphine Compounds – a Rational Synthesis

Dominik Höhne, Eberhardt Herdtweck, Alexander Pöthig and Fritz. E. Kühn*

Table of contents:

NMR spectra and proton species of 2-4	2-8
TG-MS spectra of 2 and 3	9
SC-XRD details	10-15
Cyclic voltammograms of 2-4 and parameters of CV measurements	15-18

Mo ΗN Mo 0 Ο Ó С NΗ Mo Mo (Ph)2 P Ha Ο Ο Ήa H_b (Ph)2 ${\rm H_b}$ H_c . Н_d

Fig. S2 Different proton species of the cyclobutane rings in 2.

Fig. S3 COSY spectrum of 2 in CD₃CN.

Fig. S6 Different proton species of the cyclobutane rings and the ethylene bridges in 3.

`Н_d

H_b

H_b′

Hc

(Ph)₂

Fig. S7 COSY spectrum of 3 in CD₃CN.

Fig. S11 Different proton species of the cyclobutane rings and the methylene bridges in 4.

Fig. S15 TGA (blue) and MS curves (green for propionitrile, red for CO₂ and black for phenyl group) of compound **2**.

Fig. S16 TGA (blue) and MS curves (green for propionitrile, red for CO_2 and black for phenyl group) of compound 3.

Single Crystal X-Ray Structure Determination of Compounds 2, and 3

General:

Data were collected on an X-ray single crystal diffractometer equipped with a CCD detector (Bruker APEX II, κ -CCD), a rotating anode (Bruker AXS, FR591) with MoK_{α} radiation (λ = 0.71073 Å), and a graphite monochromator by using the SMART software package. [1] The measurements were performed on single crystals coated with perfluorinated ether. The crystals were fixed on the top of a cactus prickle (Opuntia ficus-india) and transferred to the diffractometer. The crystals were frozen under a stream of cold nitrogen. A matrix scan was used to determine the initial lattice parameters. Reflections were merged and corrected for Lorenz and polarization effects, scan speed, and background using SAINT. [2] Absorption corrections, including odd and even ordered spherical harmonics were performed using SADABS. [2] Space group assignments were based upon systematic absences, E statistics, and successful refinement of the structures. Structures were solved by direct methods with the aid of successive difference Fourier maps, and were refined against all data using WinGX [7] based on SIR-92 [3a] or SIR-97 [3b] in conjunction with SHELXL-97 [5]. Unless otherwise noticed, methyl hydrogen atoms were refined as part of rigid rotating groups, with a C-H distance of 0.98 Å and $U_{iso(H)} = 1.5 \cdot U_{eq(C)}$. Other H atoms were placed in calculated positions and refined using a riding model, with aromatic C–H distances of 0.95 Å and with methylene C-H distances of 0.99 Å, and $U_{iso(H)} = 1.2 \cdot U_{ea(C)}$. For compound 2 the N-H distances was fixed to 0.88 Å and $U_{iso(H)} = 1.2 \cdot U_{eq(N)}$. If not mentioned otherwise, non-hydrogen atoms were refined with anisotropic displacement parameters. Full-matrix least-squares refinements were carried out by minimizing $\Sigma w(F_0^2 - F_c^2)^2$ with SHELXL-97 [5] weighting scheme. Neutral atom scattering factors for all atoms and anomalous dispersion corrections for the nonhydrogen atoms were taken from International Tables for Crystallography. [4] Images of the crystal structures were generated by PLATON. [6]

Special:

2: As all crystals appeared to be twinned, two components were identified using CELL NOW [8]. The data were integrated using two domains (domain 1 and 2 each 50.0% and unit cell relationships a' = -a; b'=b; c'=-c) and scaled using TWINABS. [9] Absorption corrections, including odd and even ordered spherical harmonics were

performed using TWINABS. HKLF4 was used for solution, HKLF5 for structure refinement.

3: Full refinement was possible without running into problems.

Compound 2

Fig. F1 – Ortep drawing of compound 2 with 50% ellipsoids. [6]

Operator:	*** Herdtweck ***			
Molecular Formula:	$C_{84} H_{94} B_4 F_{16} Mo_4 N_{10} O_8 P_4$			
	$[(C_{84} H_{94} Mo_4 N_{10} O_8 P_4)^{4+}], 4[(B F_4)^{-}]$			
Crystal Color / Shape	Red fragment			
Crystal Size	Approximate size of crystal fragment used for data collection:			
	$0.18 \times 0.38 \times 0.51 \text{ mm}$			
Molecular Weight:	2226.57 a.m.u.			
F ₀₀₀ :	2248			
Systematic Absences:	h0l: l≠2n; 0k0: k≠2n			
Space Group:	Monoclinic $P 2_1/c$ (I.TNo.: 14)			
Cell Constants:	Least-squares refinement of 9487 reflections with the programs			
	"APEX suite" and "SAINT" [1,2]; theta range $1.25^{\circ} \le \theta \le 25.47^{\circ}$;			
	$Mo(K\alpha)$; $\lambda = 0.71073$ Å			

	a = b = a = b	18.183(2) Å 15.535(2) Å 18.872(2) Å	β=	116.427(3)°
Diffractometer:	c - V = 4774.0(10)· Kappa APEX II	10.675(2) A 10^6 pm ³ ; Z = 2; D _{calc} (Area Diffraction Sy	= 1.549 g o	cm^{-3} ; Mos. = 0.66 KER AXS): rotating
	anode; graphite $M_0(K_{\overline{\alpha}})$	monochromator; 50	kV; 40 m.	A; $\lambda = 0.71073$ Å;
Temperature:	(-150 ± 1) °C;	(123	±1) K	
Measurement Range:	$1.25^{\circ} < \theta < 25.4$	7°; h: -21/19, k: 0/1	8, 1: 0/22	
Measurement Time:	2×5 s per film	<i>, ,</i>	,	
Measurement Mode:	measured: 10 ru	ns; 5011 films / scale	d: 10 runs;	5011 films
I P - Correction	φ - and ω -move Yes [2]	ement; Increment: $\Delta \varphi$	$\Delta \omega = 0.50$	°; $dx = 100.0 \text{ mm}$
Intensity Correction	No/Yes: during	scaling [2]		
Absorption Correction:	Multi-scan: duri	ng scaling: $\mu = 0.669$	0 mm ⁻¹ [2]	
	Correction Facto	ors: $T_{min} = 0.5$	5812 T	$T_{max} = 0.7452$
Reflection Data:	16083	reflections were integ	grated and s	caled
	576	reflections systematic	absent and	d rejected
	15507	reflections to be merg	ged	5
	8832	independent reflectio	ns	
	0.047	R_{int} : (basis F_o^2)		
	15507	reflections (all) were	used in Hk	KLF5 refinements
	14292	independent reflectio	ns with $I_o >$	$\sim 2\sigma(I_o)$
	99.8 %	completeness of the c	lata set	
	585	parameter full-matrix	refinemen	t
	26.5	reflections per param	eter	
Solution:	Direct Methods	[3a]; Difference Four	rier synthes	es
Refinement Parameters:	In the asymmetr	ic unit:		
	65 No par	n-hydrogen atoms war ameters	ith anisotro	pic displacement
Hydrogen Atoms:	In the differenc	e map(s) calculated	from the m	odel containing all
	non-hydrogen a	toms, not all of the	hydrogen	positions could be
	determined from	n the highest peaks.	For this real	ason, the hydrogen -0.05 -0.08 -0.00
	atoms were place $\lambda \cdot A = 0.8$	$\begin{pmatrix} 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\$	sitions (a _{C-H}	-0.95, 0.98, 0.99
	A, $u_{\text{N-H}} = 0.0$	the parent carbon at	m(U = 1)	$2/15 \amalg \cdot \Pi = 12$
	U _u) The hydro	ogen atoms were ind	$O_{\rm H} = 1$ cluded in f	$1.2/1.3$ $O_{\rm C}$, $O_{\rm H} = 1.2$
	calculations but	not refined		ne structure ructor
Atomic Form Factors:	For neutral atom	is and anomalous dis	persion [4]	
Extinction Correction:	no			
Weighting Scheme:	$w^{-1} = \sigma^2(F_0^2) + (a$	$(*P)^{2}+b*P$		
0 0	with a: 0.0657: 1	o: 5.8818: P: [Maxim	$um(0 \text{ or } F_{a})$	$^{2})+2*F_{2}^{2}]/3$
Shift/Err	Less than 0.001	in the last cycle of re	finement [.]	
Resid. Electron Density:	+1.07 eError!/Å	3 : -0.65 eError!/Å ³		
R1:	$\Sigma(F_0 - F_c) / \Sigma F_c $			
$[F_0 > 4\sigma(F_0): N=14292]$				= 0.0361
[all refletns; N=15507]:				= 0.0389
R2:	$[\Sigma w (F_0^2 - F_c^2)^2 / \Sigma$	$w(F_0^2)^2]^{1/2}$		
	,	/ .		

Fig.	F2 –	Ortep	drawing	of com	pound 3	with	50% ell	lipsoids.	[6]
			2						

Operator:	*** Herdtwe	eck ***			
Molecular Formula:	$C_{94} H_{110} B_4 F_{16} Mo_4 N_{10} O_8 P_4$				
	[(C ₇₆ H ₈₀ M	0 ₄ N ₄ O ₈ P ₄) ⁴⁺], 4[(B	F ₄) ⁻], 6(C ₃ H	5 N)	
Crystal Color / Shape	Red prism				
Crystal Size	Approximat	e size of crystal fragi	ment used for	data collection:	
	0.20×0.21	× 0.34 mm			
Molecular Weight:	2362.81 a.m	. u .			
F ₀₀₀ :	2400				
Systematic Absences:	none				
Space Group:	Triclinic	<i>P</i> 1 (I	.TNo.: 2)		
Cell Constants:	Least-square	es refinement of 90	04 reflection	s with the programs	
	"APEX suite" and "SAINT" [1,2]; theta range $0.86^{\circ} < \theta < 25.44^{\circ}$ Mo(K α); $\lambda = 0.71073$ Å				
	a =	12.4049(5) Å	$\alpha =$	74.092(2)°	
	<i>b</i> =	18.0187(7) Å	$\beta =$	88.172(2)°	

	<i>c</i> =	24.6268(10) Å $\gamma = 81$.785(2)°
	V = 5239.3(4) Å	A^3 : Z = 2: $D_{calc} = 1.498$ g cm ⁻³ : Mos. =	= 0.77
Diffractometer:	Kappa APEX I	(Area Diffraction System: BRUKER	AXS): rotating
2	anode; graphite	monochromator; 50 kV; 40 mA; λ	L = 0.71073 Å;
	$Mo(K\alpha)$		
Temperature:	(-150±1) °C:	(123±1) K	
Measurement Range	$0.86^{\circ} < \theta < 254$	14° h = $14/14$ k = $21/21$ l = $-29/29$	
Measurement Time:	2×10 s per film	n	
Measurement Mode:	$2 \times 10^{\circ}$ s per filli measured: 12 ru	ins: 3229 films / scaled: 12 runs: 322	9 films
Weasurement Wode.	a and a more	$\frac{1}{2}$ mont: Increment: $\frac{1}{2}$ and $\frac{1}{2}$ mont: $\frac{1}{2}$ mont: $\frac{1}{2}$ mont: $\frac{1}{2}$	y = 60.0 mm
LP Correction:	φ and ω -move Vec [2]	ement, merement. $\Delta \varphi \Delta \omega = 0.50^{\circ}$, ω	<u> </u>
Intensity Correction	No/Vos: during	scaling [2]	
Absorption Correction:	No/ 1 cs, uuring	$\frac{1}{2} \sum_{i=1}^{2} \frac{1}{2} \sum_{i=1}^{2} \frac{1}$	
Absolption Collection.	Correction East	$\begin{array}{c} \text{ing scaling, } \mu = 0.014 \text{ mm}^{-1} [2] \\ \text{org.} \qquad T = -0.6251 \text{ T} \end{array}$	-07452
Deflection Date:	Correction Fact	OFS. $I_{min} = 0.0351$ I_{max}	- 0. /432
Reflection Data:	92311	reflections were integrated and scale	(d) 1 (4 1-1-1)
	9	obvious wrong intensity and rejected	i (two nki)
	92302	in damaged and and an flag stight of the set	
	191/2	independent reflections $\mathbf{P}_{1} = (1 + 1 + 2)$	
	0.049	$\mathbf{K}_{\text{int}} \left(\text{Dasis } F_0^2 \right)$	1.
	19172	independent reflections (all) were us c	ed in
	1 5 0 7 1	refinements	(7)
	150/1	independent reflections with $I_o > 2\sigma$	(I_o)
	99.1 %	completeness of the data set	
	1281	parameter full-matrix refinement	
	15.0	reflections per parameter	
Solution:	Direct Methods	[3b]; Difference Fourier syntheses	
Refinement Parameters:	ers: In the asymmetric unit:		
	141 No	on-hydrogen atoms with anisotropic on rameters	lisplacement
Hydrogen Atoms:	In the difference	e map(s) calculated from the model	l containing all
	non-hydrogen a	atoms not all of the hydrogen posi-	itions could be
	determined from	n the highest peaks. For this reason	the hydrogen
	atoms were pla	ced in calculated positions ($d_{CH} = 0$	95 0 98 0 99
	Å). Isotropic d	isplacement parameters were calcu	lated from the
	parent carbon a	$(U_{\rm H} = 1.2/1.5 \ U_{\rm C})$. The hydrog	en atoms were
	included in the	structure factor calculations but not r	efined.
Atomic Form Factors:	For neutral aton	ns and anomalous dispersion [4]	
Extinction Correction:	no		
Weighting Scheme:	$w^{-1} = \sigma^2(F_0^2) + (a^2)^2$	$(a*P)^2+b*P$	
	with a: 0.0463 .	h: 26 3199. P: [Maximum(0 or E^{2})+	$-2*F^{2}$]/3
Shift/Err	$I_{\text{org}} \text{ then } 0.001$	in the last evale of refinement:	2.1 c]/5
SIIII/EII. Desid Electron Density:	± 2.07 oF $\pm 1/Å$	In the last cycle of refinement. $3: 1.46 \text{ as } \text{m} \text{m}^{1/3}$	
Resid. Electron Density.	$\pm 2.07 \text{ CError!/A}$	-, -1.40 ELFFOF!/A-	
KI: [E > 4 - (E) > N - 15071]	$2(F_0 - F_c)/2 F$	o	- 0.0522
$[r_0 > 4\sigma(r_0); N=150/1]$:			= 0.0533
[all reflections; $N=191/2$]:		- (J- 2)(2)(/2	= 0.0/1/
WK2:	$[2W(F_0^2 - F_c^2)^2/2]$	$W(F_0^2)^2]^{1/2}$	0.10.17
$[F_{o} > 4\sigma(F_{o}); N=15071]:$			= 0.1247
[all reflctns; N=19172]:			= 0.1408

Goodness of fit:	$[\Sigma w (F_0^2 - F_c^2)^2 / (\text{NO-NV})]^{1/2}$	= 1.066
Remarks:	Refinement expression $\Sigma w (F_0^2 - F_c^2)^2$	
References:		

- [1] APEX suite of crystallographic software. APEX 2 Version 2008.4. Bruker AXS Inc., Madison, Wisconsin, USA (2008).
- [2] SAINT, Version 7.56a and SADABS Version 2008/1. Bruker AXS Inc., Madison, Wisconsin, USA (2008).
- [3a] Altomare, A.; Cascarano, G.; Giacovazzo, C.; Guagliardi, A.; Burla, M. C.; Polidori, G.; Camalli, M. "SIR92", J. Appl. Crystallogr. 1994, 27, 435-436.
- [3b] Altomare, A.; Cascarano, G.; Giacovazzo, C.; Guagliardi, A.; Moliterni A. G. G.; Burla, M. C.; Polidori, G.; Camalli, M.; Spagna, R. "SIR97", A New Tool for Crystal Structure Determination and Refinement; J. Appl. Crystallogr. 1999, 32, 115-119.
- [4] International Tables for Crystallography, Vol. C, Tables 6.1.1.4 (pp. 500-502), 4.2.6.8 (pp. 219-222), and 4.2.4.2 (pp. 193-199), Wilson, A. J. C., Ed., Kluwer Academic Publishers, Dordrecht, The Netherlands, 1992.
- [5] Sheldrick, G. M. "SHELXL-97", University of Göttingen, Göttingen, Germany, (1998).
- [6] Spek, A. L. "PLATON", A Multipurpose Crystallographic Tool, Utrecht University, Utrecht, The Netherlands, (2010).
- [7] L. J. Farrugia. "WinGX (Version 1.70.01 January 2005)", J. Appl. Crystallogr. 1999, 32, 837-838.
- [8] CELL NOW, Version 2008-2. Bruker AXS Inc., Madison, Wisconsin (USA) 2008
- [9] SAINT, Version 8.27b and TWINABS (version 2012/1).Bruker AXS Inc., Madison, Wisconsin (USA) 2012.

Cyclic voltammograms of 2-4 and parameters of CV measurements

Fig. S17 Cyclic voltammogram of compound 2 (scan rate: 100 mV/s).

Fig. S18 Cyclic voltammogram of compound 2 (scan rate: 1000 mV/s).

Fig. S19 Cyclic voltammogram of compound 3 (scan rate: 100 mV/s).

Fig. S20 Cyclic voltammogram of compound 3 (scan rate: 1000 mV/s).

Fig. S21 Cyclic voltammogram of compound 4 (scan rate: 100 mV/s).

Fig. S22 Cyclic voltammogram of compound 4 (scan rate: 1000 mV/s).

CV measurements of complexes **2-4** were carried out on a Gamry potentiostat using a threeelectrode cell. The working electrode was a platinum electrode (1 mm diameter), which was polished before each measurement. As a counter electrode, a Pt/Ti electrode was utilized. The potential was measured against Ag/AgCl with a scan rate of 100 and 1000 mV/s, respectively. $[Bu_4N][BF_4]$ was used as electrolyte (0.025 mol/L in dry and degased MeCN) and the concentration of the complexes was around 0.25x10⁻³ mol/L.

For all complexes **2-4** a reversible oxidation/reduction process can be excluded since, amongst others, the following requirements for a reversible process do not apply [10]:

- 1. For a one electron process $\Delta E = E^A E^C = 59 \text{ mV}$
- 2. The position of the peak maxima E_P is independent of the scan rate v

Reference:

[10] R. Greef, R. Peat, L. M. Peter, D. Pletcher, J. Robinson, in *Instrumental Methods in Electrochemistry*, ed. T. J. Kemp, Ellis Horwood Limited, Halsted Press, Chichester/New York, 1985.