Supporting Information

Site-Sensitive Energy Transfer Modes in $Ca_3Al_2O_6$: $Ce^{3+}/Tb^{3+}/Mn^{2+}$ Phosphors

Jilin Zhang ^{a, b,} *, Yani He ^{a, b}, Zhongxian Qiu ^{a, b}, Weilu Zhang ^{a, b}, Wenli Zhou ^{a, b}, Liping Yu ^{a, b}, Shixun Lian ^{a, b, *}

^a Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha 410081, China.

^b Key Laboratory of Sustainable Resources Processing and Advanced Materials of Hunan Province College, Hunan Normal University, Changsha 410081, China.

*Corresponding Authors: Fax and Tel: +86 731 88865345; E-mail:

chemzhangjl@163.com (Jilin Zhang), shixunlian@gmail.com (Shixun Lian).

Fiugre S1. The comparison of PLE spectra of Tb^{3+}/Mn^{2+} and PL spectra of Ce^{3+} in

Ca₃Al₂O₆, showing different spectral overlap manners.

Figure S2. PLE spectra of $Ca_{3(0.96-y)}Al_2O_6$: 0.06Ce³⁺, 0.06Li⁺, 3*y*Tb³⁺ monitored at 542 nm. Excitation bands contain several bands. The highest one is at ~305 nm with a shoulder at ~335 nm, which belongs to *f-d* transition of Ce³⁺, suggesting energy transfer from Ce³⁺ to Tb³⁺. An additional band at ~367 nm appears when *y* is higher than 0.04. This phenomenon indicates the existence of purplish-blue Ce³⁺ and the transfer of its energy to Tb³⁺ with a high content. Furthermore, the excitation bands at about 245, 263 and 283 nm are consistent with that of Tb³⁺ single-doped one.

Figure S3. PLE spectra of $Ca_{3(0.96-z)}Al_2O_6$: 0.06Ce³⁺, 0.06Li⁺, 3*z*Mn²⁺ monitored at 635 nm. The excitation bands mainly two bands at 305 and ~ 335 nm, which are similar as that monitored at 470 nm. These results suggest energy transfer from greenish-blue Ce³⁺ to Mn²⁺. In addition, a shoulder band at ~370 nm and several bands in 400-600 range appear, which originate from *d-d* transitions of Mn²⁺ itself.