Pd(II) Coordinated deprotonated diphenyl phoshino amino pyridine: Reactivity towards Solvent, Base, and Acid

Sanjay Pratihar, ^{†,*} Rupa Pegu,[†] Ankur Kanti Guha,[£] and Bipul Sarma[†]

spratihar@tezu.ernet.in, spratihar29@gmail.com

[†]Department of Chemical Sciences, Tezpur University, Napaam, 784028, Assam, India

[£] Department of Chemistry, Dibrugarh University, Dibrugarh, Assam, India

Fig. S1 UV-vis titration of complex C1 with dilute HCl solution.

S1.1 Experimental and calculated transition of complex C1 and C2:

The calculated UV-Vis spectra of **C1** resemble well with the experimentally observed transitions. The experimental transition at 418 nm (calculated = 415 nm) is found to be a π to σ^* transition originating from ligand based π occupied molecular orbital to M-L_{σ^*} orbital. Similarly, the transition at 352 nm (calculated =342 nm), 310 nm (calculated = 317 nm) and 262 nm (calculated = 281 nm) are assigned to ligand based π to π^* transition, ligand based π to M-L_{σ^*} and metal d_z2 orbital to M-L_{σ^*} transition respectively. The experimental bands at 361 nm (calculated = 373 nm) for **C2** is assigned to be ligand based π molecular orbital to M-L_{σ^*} orbital. The other two calculated = 306 nm) is due to be transition from metal d_z² orbital to M-L_{σ^*} orbital. The other two calculated bands at 382 nm and 283 nm is due to the transition from ligand based π molecular orbital to M-L_{σ^*} orbital and metal d_{xz} orbital to M-L_{$\sigma^*} orbital and metal d_{xz} orbital to M-L_{<math>\sigma^*} orbital and metal d_{xz} orbital to M-L_{<math>\sigma^*} orbital.</sub>$ </sub></sub>

#	Wavelength (nm) calc.	Key Transition (Type)	Osc. Strength
	(exp.)		(f)
	415 (418)	HOMO \rightarrow LUMO (L $\pi \rightarrow$ M-L σ^*)	0.0382
	398	HOMO-1 \rightarrow LUMO (L $\pi \rightarrow$ M-L σ^*)	0.0195
C1	342 (352)	HOMO \rightarrow LUMO+1 (L $\pi \rightarrow$ L π^*)	0.0792
CI	331	HOMO-1 \rightarrow LUMO+1 (L $\pi \rightarrow$ L π^*)	0.030
	317 (310)	HOMO-2 \rightarrow LUMO (L $\pi \rightarrow$ M-L σ^*)	0.0651
	281 (262)	HOMO-4 \rightarrow LUMO (dz2 \rightarrow M-L σ^*)	0.1061
	382	HOMO \rightarrow LUMO (L $\pi \rightarrow$ M-L σ^*)	0.0356
	373 (361)	HOMO-1 \rightarrow LUMO (L $\pi \rightarrow$ M-L σ^*)	0.0101
C2	331	HOMO-4 \rightarrow LUMO (L $\pi \rightarrow$ M-L σ^*)	0.0149
	306 (306)	HOMO-6 \rightarrow LUMO (dz2 \rightarrow M-L σ^*)	0.0089
	283	HOMO-12 \rightarrow LUMO (dxz \rightarrow M-L σ^*)	0.0677

Table S1. Key transitions in the TD-DFT computations for C1 and C2.

S1.2 Elctrophilicity of Sn(IV) Reagents:

The observed electrophilicity (ω) order is SnCl₄ > PhSnCl₃ > Me₂SnCl₂ (Fig. S2). The order suggested that substitution of chloride by phenyl increases the electron density at tin centre due to +R and –I effect of phenyl ring, which is further increase in alkyl substituted Me₂SnCl₂ because of the +I effect of Me. So, it was expected that hydrolysis rate of the organotin(IV) reagents will also decrease in the same order SnCl₄ > PhSnCl₃ > Me₂SnCl₂, as generation of HCl will also depend upon the electron density at tin centre. Gratifyingly, the calculated LUMO energy of the three reagents suggested the faster hydrolysis in case of SnCl₄ because of low lying LUMO compared to PhSnCl₃ and Me₂SnCl₂ (Fig. S2).

Fig. S2 Relation between the rate of hydrolysis, LUMO, and electrophilicity of three organotin (IV) reagents.

S1.3 Experimental and calculated transition of complex C6 and C7:

The reaction between C1 and SnI₄ also has been monitored with UV-vis spectroscopy. Upon gradual addition of SnI₄ to C1 in MeCN, two bands of C1 at 352, and 310 nm disappeared, while a new peak at 302 nm and 458 nm appeared due to the generation of a new complexes (Fig. 6). To assign the UV-Vis transitions, we have performed TD-DFT calculations on C6 and C7. Table S2 contains the key transitions. The first two transition for C7 at 459 and 438 nm are assigned to iodine lone pair to M-L_{σ^*} orbital. The next two transitions at 324 and 312 nm are assigned to π orbital of DPAP ligand to M-L_{σ^*} orbital. The last two transitions at 282 and 271 nm are assigned to iodine lone pair and π orbital of DPAP to M-L_{σ^*} orbital. Similarly, the calculated values for C6 are in close agreement with the experimental observed transitions. The transitions at 313, 303 and 298 nm are assigned to L_n \rightarrow M-L_{σ^*} transition while the transitions at 287 and 273 nm are assigned to bromine lone pair to ligand based π^* orbital of diphenyl phoshino amino pyridine (DPAP) ligand. The other two transition at 265 and 259 nm are assigned to bromine lone pair to M-L_{π^*} orbital.

Fig. S3. UV-vis titration of complex C1 with SnI4 in MeCN solution.

Complex	Wavelength (nm) calculated (Experimental)	Key Transition (Type)	Osc. Strength (<i>f</i>)
	408	HOMO-3 \rightarrow LUMO (Br _(lp) \rightarrow M-	0.0175
	374 (372)	$\begin{array}{c} L_{\sigma^*} \\ \text{HOMO-2} \rightarrow \text{LUMO} (\text{Br}_{(\text{lp})} \rightarrow \text{M-} \\ L_{\sigma^*}) \end{array}$	0.0152
	313 (310)	HOMO-6 \rightarrow LUMO (L _{π} \rightarrow M-L _{σ^*})	0.1236
	303	HOMO-7 \rightarrow LUMO (L _{π} \rightarrow M-L _{σ^*})	0.0633
C	298	HOMO-8 \rightarrow LUMO (L _{π} \rightarrow M-L _{σ^*})	0.0147
C6	287 (278)	HOMO \rightarrow LUMO+1 (Br _(lp) \rightarrow L _{π^*})	0.0856
	273	HOMO-1 \rightarrow LUMO+1 (Br _(lp) \rightarrow	0.0613
	265	$L_{\pi^*})$ HOMO \rightarrow LUMO+2 (Br _(lp) \rightarrow M- $L_{\pi^*})$	0.0382
	259	HOMO-3 \rightarrow LUMO+2 (Br _(lp) \rightarrow M- L _{π^*})	0.0254
	459 (458)	HOMO \rightarrow LUMO (L _n \rightarrow M-L _{σ^*})	0.0201
	438	HOMO-3 \rightarrow LUMO (L _n \rightarrow M-L _{σ^*})	0.0135
	324	HOMO-6 \rightarrow LUMO (L _{π} \rightarrow M-L _{σ*})	0.208
C7	312 (306)	HOMO-8 \rightarrow LUMO (L _{π} \rightarrow M-L _{σ*})	0.0503
	282	HOMO \rightarrow LUMO+2 (I _(lp) \rightarrow M-L _{π^*})	0.1112
	271	HOMO-12 \rightarrow LUMO (I _(π) \rightarrow M-	0.0856
		$L_{\sigma^*})$	

4

Fig. S4. UV-Vis spectra of C1

Fig. S5. UV-Vis spectra of C6

S1.4 ¹H and ³¹P, and ¹¹⁹Sn NMR spectra of all the complexes: all the spectra were recorded in DMSO- d_{63} at 298 K. solvent residual signals were highlighted in the spectra (DCE represents 1, 2-dichloroethane).¹

¹H and ¹³C NMR spectra of all the coupling products: all the spectra were recorded in CDCl₃ at 298 K. solvent residual signals were highlighted in the spectra.

Fig. S13. ¹H and ¹³C NMR of 1a in CDCl₃ at 298K

Fig. S14. ¹H and ¹³C NMR of 1b in CDCl₃ at 298K

Optimized Geometry:

<u>C-1</u>

Cartesian Coordinates (Angstroms):

1	46	0	1.146112	0.000004	0.000023
2	15	0	-0.207327	1.613812	0.770837
3	7	0	2.524374	1.546198	0.473435
4	6	0	-1.567509	1.159438	1.881669
5	6	0	-0.772961	2.382358	-1.851051
6	1	0	-0.285942	1.630519	-2.100731
7	6	0	-0.997761	2.650551	-0.508258
8	6	0	-1 294496	0 935536	3 209145
9	1	0	-0 443099	1 113793	3 538194
10	6	0	2 039851	2 542102	1 275907
11	6	Ő	4 221422	3 605437	1 157649
12	1	Õ	4 823506	4 258787	1 432702
13	6	Ő	3 752968	1.663877	-0 075944
14	1	0	4 028682	1.003077	-0 690246
15	6	0	2 9/19226	3 576206	1 686516
16	1	0	2.949220	1 2103/3	2 302846
17	1	0	2.061912	4.219343	2.302840
1/	6	0	0.775032	2.370881	1.070273
10	1	0	-2.204/79	0.430041	4.001931
19	I C	0	-2.059870	0.288983	4.934032
20	0	0	-2.858505	0.911652	1.408010
21	I	0	-3.058113	1.044452	0.509472
22	6	0	-1./2/589	3.//01/5	-0.156116
23	l	0	-1.885089	3.956366	0.741358
24	6	0	-2.219216	4.605436	-1.120541
25	1	0	-2.720735	5.350384	-0.878697
26	6	0	-3.845188	0.465617	2.282301
27	1	0	-4.715887	0.344166	1.978865
28	6	0	-1.268788	3.225557	-2.806368
29	1	0	-1.127888	3.039448	-3.706642
30	6	0	-1.973516	4.345340	-2.442166
31	1	0	-2.285335	4.929495	-3.095301
32	6	0	-3.531175	0.204780	3.595136
33	1	0	-4.178462	-0.138558	4.167734
34	6	0	4.600642	2.675556	0.229128
35	1	0	5.429838	2.736981	-0.187583
36	15	0	-0.207248	-1.613817	-0.770858
37	7	0	2.524451	-1.546057	-0.473484
38	6	0	-1.567466	-1.159516	-1.881676
39	6	0	-0.772814	-2.382452	1.851116
40	1	0	-0.285833	-1.630587	2.100791
41	6	0	-0.997614	-2.650598	0.508245
42	6	0	-1.294479	-0.935598	-3.209155
43	1	0	-0.443076	-1.113810	-3.538212
44	6	0	2.039974	-2.541987	-1.275950
45	6	0	4.221603	-3.605205	-1.157715
46	1	Õ	4.823719	-4.258443	-1.432714
47	6	Ō	3.753057	-1.663670	0.075883
48	1	Õ	4.028743	-1.022172	0.690241
	-	•			

49	6	0	2.949399	-3.576102	-1.686488
50	1	0	2.682113	-4.219193	-2.302896
51	7	0	0.773173	-2.570833	-1.676306
52	6	0	-2.264796	-0.450156	-4.061951
53	1	0	-2.059905	-0.289086	-4.954633
54	6	0	-2.858470	-0.911718	-1.407944
55	1	0	-3.058062	-1.044609	-0.509464
56	6	0	-1.727386	-3.770261	0.156111
57	1	0	-1.884886	-3.956519	-0.741281
58	6	0	-2.218959	-4.605548	1.120541
59	1	0	-2.720440	-5.350523	0.878702
60	6	0	-3.845187	-0.465816	-2.282284
61	1	0	-4.715888	-0.344412	-1.978840
62	6	0	-1.268587	-3.225619	2.806358
63	1	0	-1.127687	-3.039502	3.706631
64	6	0	-1.973259	-4.345439	2.442164
65	1	0	-2.285040	-4.929611	3.095301
66	6	0	-3.531200	-0.204962	-3.595122
67	1	0	-4.178513	0.138341	-4.167714
68	6	0	4.600783	-2.675223	-0.229138
69	1	0	5.429987	-2.736685	0.187504

<u>C-2</u> Cartesian Coordinates (Angstroms):

1	7	0	0.548081	-2.737707	1.331459
2	1	0	0.210789	-3.287791	1.899948
3	6	0	-0.624739	2.410273	1.806518
4	1	0	-0.040248	1.731099	2.055458
5	7	0	1.030032	2.429191	-1.573669
6	1	0	0.800902	2.919031	-2.242339
7	6	0	-2.667445	-2.912260	-0.068941
8	1	0	-2.910301	-2.918599	0.828754
9	6	0	4.405790	-3.127499	0.105820
10	1	0	5.294929	-3.172288	-0.163170
11	6	0	-0.824898	-0.880957	3.352151
12	1	0	0.045561	-1.194442	3.447195
13	6	0	-1.530781	-2.249836	-0.466025
14	6	0	-3.479842	-3.593525	-1.033516
15	1	0	-4.225589	-4.075791	-0.757416
16	6	0	-2.035197	-2.869353	-2.766610
17	1	0	-1.829793	-2.817478	-3.672112
18	6	0	-1.206123	-2.274260	-1.817079
19	1	0	-0.410874	-1.881214	-2.096545
20	6	0	-0.907868	2.625718	0.479906
21	6	0	1.853932	-2.877368	0.947837
22	6	0	-2.713922	0.134538	4.275980
23	1	0	-3.144031	0.549742	4.988413
24	6	0	-2.234835	4.477607	1.019353

25	1	0	-2.767934	5.190292	0.749710
26	6	0	-3.160073	-3.533476	-2.343638
27	1	0	-3.709608	-3.948017	-2.968851
28	6	0	-1.227191	3.227212	2.792229
29	1	0	-1.068661	3.079558	3.696679
30	6	0	3.810743	-4.183896	0.695658
31	1	0	4.283785	-4.979218	0.789172
32	6	0	-2.054904	4.247425	2.376818
33	1	0	-2.490926	4.779394	3.002662
34	6	0	-1.472927	-0.397942	4.486508
35	1	0	-1.086555	-0.435295	5.331735
36	6	0	-1.641949	3.674412	0.050260
37	1	0	-1.747027	3.852583	-0.856433
38	6	0	-0.980715	0.842535	-3.294671
39	1	0	-0.090371	0.921893	-3.551143
40	6	0	-2.718882	1.001690	-1.627921
41	1	0	-3.023697	1.171459	-0.765858
42	6	0	-1.944002	0.427161	-4.209562
43	1	0	-1.688791	0.241928	-5.084408
44	6	0	-3.560573	0.605427	-2.612763
45	1	0	-4.458280	0.558899	-2.374296
46	6	0	-3.294232	0.280951	-3.843051
47	1	0	-3.944652	-0.023703	-4.433971
48	6	0	-1.375340	1.142767	-1.967363
49	46	0	1.199309	-0.118078	-0.005827
50	15	0	-0.404182	-1.502881	0.704434
51	15	0	-0.123002	1.528786	-0.748839
52	7	0	2.680235	1.350299	-0.383234
53	7	0	2.423840	-1.819111	0.355471
54	6	0	3.923980	1.357721	0.072858
55	1	0	4.167575	0.686977	0.669111
56	6	0	-2.622520	-0.385470	1.969948
57	1	0	-3.006809	-0.326290	1.125158
58	6	0	2.504277	-4.109581	1.167236
59	1	0	2.088917	-4.822062	1.596873
60	6	0	4.876520	2.278236	-0.267931
61	1	0	5.735843	2.231813	0.084734
62	6	0	3.653668	-1.957731	-0.093589
63	1	0	4.039998	-1.252978	-0.561526
64	6	0	-1.386073	-0.922727	2.114204
65	6	0	-3.333310	0.087909	3.106837
66	1	0	-4.219233	0.360359	3.030338
67	6	0	2.337368	2.376379	-1.172381
68	6	0	3.278585	3.352824	-1.619156
69	1	0	3.024664	4.017308	-2.218180
70					
70	6	0	4.517964	3.292895	-1.164023

<u>**C-6</u>** Cartesian Coordinates (Angstroms):</u>

			0	/ -	
1	46	0	1.048153	-0.473358	-0.088404
2	15	0	-0.947634	0.546859	0.065242
3	35	0	3.239011	-1.487798	-0.254087
4	7	0	-0.420448	2.185887	0.247597
5	7	0	1.812043	1.491240	0.123934
6	6	0	0.925969	2.504325	0.286902
7	6	0	-2.010040	0.219483	1.512207
8	6	0	-2.069601	0.585794	-1.372347
9	6	0	3.134566	1.768029	0.133351
10	1	0	3.774783	0.902760	-0.004174
11	6	0	1.355796	3.828173	0.478051
12	1	0	0.623124	4.618357	0.608939
13	6	0	-2.888146	-0.529469	-1.620774
14	1	0	-2.866432	-1.380578	-0.947686
15	6	0	-3.305519	0.755985	1.601039
16	1	0	-3.724827	1.317189	0.770182
17	6	0	-3.708739	-0.551403	-2.747155
18	1	0	-4.335255	-1.418195	-2.936618
19	6	0	-2.072004	1.662547	-2.270914
20	1	0	-1.425209	2.517279	-2.097638
21	6	0	3.626392	3.051260	0.312165
22	1	0	4.697061	3.220795	0.313658
23	6	0	2.715719	4.097155	0.490689
24	1	0	3.062723	5.116011	0.637186
25	6	0	-1.495003	-0.536789	2.576337
26	1	0	-0.507391	-0.980033	2.492835
27	6	0	-3.719558	0.529944	-3.632118
28	1	0	-4.360002	0.507676	-4.509474
29	6	0	-3.547508	-0.194903	3.811037
30	1	0	-4.146414	-0.358944	4.702717
31	6	0	-4.067654	0.552393	2.750856
32	1	0	-5.069393	0.968116	2.815249
33	6	0	-2.265549	-0.740793	3.721654
34	1	0	-1.866324	-1.335490	4.538115
35	6	0	-2.900269	1.634600	-3.393923
36	1	0	-2.899908	2.473929	-4.083779
37	1	0	-1.070622	2.931184	0.467090
38	35	0	-0.092745	-2.600383	-0.263104

<u>C-7</u> Cartesian Coordinates (Angstroms):

1	46	0	0.859716	-0.085497	-0.032529
2	15	0	-1.243331	0.701747	0.038592
3	53	0	3.336314	-0.904547	-0.120373

4	7	0	-0.913125	2.399001	0.127405
5	7	0	1.386695	1.963950	0.069074
6	6	0	0.386363	2.874347	0.161496
7	6	0	-2.285551	0.337811	1.491492
8	6	0	-2.337094	0.525009	-1.410350
9	6	0	2.667806	2.393462	0.075591
10	1	0	3.406385	1.602373	-0.002899
11	6	0	0.656299	4.248263	0.277050
12	1	0	-0.165271	4.953717	0.352473
13	6	0	-3.016270	-0.690893	-1.599687
14	1	0	-2.907646	-1.492723	-0.876380
15	6	0	-3.635876	0.723529	1.534347
16	1	0	-4.102970	1.182237	0.666878
17	6	0	-3.809085	-0.874526	-2.731196
18	1	0	-4.327411	-1.818195	-2.874640
19	6	0	-2.448804	1.539592	-2.372101
20	1	0	-1.908658	2.472725	-2.243876
21	6	0	3.004238	3.733631	0.181926
22	1	0	4.047817	4.026914	0.184368
23	6	0	1.975400	4.674593	0.287643
24	1	0	2.199249	5.733840	0.376131
25	6	0	-1.704807	-0.289437	2.604542
26	1	0	-0.671137	-0.618361	2.558182
27	6	0	-3.929922	0.144426	-3.679733
28	1	0	-4.548118	-0.003897	-4.560784
29	6	0	-3.804255	-0.117991	3.794952
30	1	0	-4.395480	-0.298366	4.688601
31	6	0	-4.389098	0.499992	2.686331
32	1	0	-5.433274	0.798861	2.715128
33	6	0	-2.466257	-0.514628	3.751971
34	1	0	-2.014972	-1.009731	4.606878
35	6	0	-3.248599	1.349298	-3.499962
36	1	0	-3.333643	2.141048	-4.239066
37	1	0	-1.649098	3.074785	0.294831
38	53	0	-0.092816	-2.514662	-0.095280

<u>SnCl</u>₄ Cartesian Coordinates (Angstroms):

Frequ	ency Data:				
5	17	0	-1.878873	1.328432	0.000000
4	17	0	0.000036	-1.328664	-1.878577
3	17	0	0.000036	-1.328664	1.878577
2	17	0	1.878696	1.328852	0.000000
1	50	0	0.000036	0.000015	0.000000

Temperature	298.150 Kelvin.	Pressure	1.00000 Atm.	
Zero-point co	orrection=	0	.004720 (Hartree/Particle)	
Thermal corr	ection to Energy=	:	0.012428	

Thermal correction to Enthalpy=	0.013372
Thermal correction to Gibbs Free Energy=	-0.030752
Sum of electronic and zero-point Energies=	-1843.648219
Sum of electronic and thermal Energies=	-1843.640511
Sum of electronic and thermal Enthalpies=	-1843.639567
Sum of electronic and thermal Free Energie	s= -1843.683691

<u>PhSnCl</u>₃ Cartesian Coordinates (Angstroms):

1	50	0	-0.714801	0.000029	-0.006692
2	17	0	-1.696303	-0.011224	2.132505
3	17	0	-1.554789	-1.908573	-1.096856
4	17	0	-1.551700	1.921444	-1.076570
5	6	0	1.411744	-0.000538	-0.002728
6	6	0	2.104946	-1.214361	0.012406
7	6	0	2.105243	1.213107	0.011737
8	6	0	3.498759	-1.209183	0.037492
9	1	0	1.573752	-2.163196	-0.008531
10	6	0	3.499073	1.207592	0.036826
11	1	0	1.574191	2.162011	-0.009726
12	6	0	4.193386	-0.000872	0.052294
13	1	0	4.040031	-2.151556	0.044811
14	1	0	4.040572	2.149838	0.043620
15	1	0	5.280068	-0.001013	0.071907

Frequency Data:

Temperature 298.150 Kelvin. Pressure	e 1.00000 Atm.
Zero-point correction=	0.094542 (Hartree/Particle)
Thermal correction to Energy=	0.106151
Thermal correction to Enthalpy=	0.107095
Thermal correction to Gibbs Free Energy	gy= 0.052289
Sum of electronic and zero-point Energ	ies= -1614.870275
Sum of electronic and thermal Energies	-1614.858666
Sum of electronic and thermal Enthalpi	es= -1614.857722
Sum of electronic and thermal Free Ene	ergies= -1614.912528

<u>Me₂SnCl₂</u> Cartesian Coordinates (Angstroms):

1	50	0	0.000000	0.274904	0.000000
2	17	0	1.883342	-1.132193	0.000000
3	17	0	-1.883344	-1.132191	0.000000
4	6	0	0.000001	1.316077	-1.846997
5	1	0	0.000000	0.591654	-2.665959
6	1	0	-0.892787	1.943277	-1.926238
7	1	0	0.892792	1.943274	-1.926238
8	6	0	0.000001	1.316077	1.846997
9	1	0	0.892792	1.943275	1.926238
10	1	0	-0.892788	1.943276	1.926239
11	1	0	0.000001	0.591654	2.665959

Frequency Data: Temperature 298.150 Kelvin. Pressure 1.00000 Atm.

Zero-point correction= 0.075575 (Hartree/Particle) Thermal correction to Energy= 0.084881 Thermal correction to Enthalpy= 0.085825 Thermal correction to Gibbs Free Energy= 0.039083 Sum of electronic and zero-point Energies= -1003.179926 Sum of electronic and thermal Energies= -1003.170619 Sum of electronic and thermal Enthalpies= -1003.169675 Sum of electronic and thermal Free Energies= -1003.216417

References:

¹ G. R. Fulmer, A. J. M. Miller, N. H. Sherden, H. E. Gottlieb, A. Nudelman, B. M. Stoltz, J. E. Bercaw and K. I. Goldberg, *Organometallics* 2010, **29**, 2176